Total de visualizações de página

deixe um OI

Como montar um PC - parte 1: Introdução ao hardware de PCs

Hardware para principiantes


Entender hardware a fundo é uma tarefa árdua. São tantos detalhes que o aprendizado pode se tornar bastante difícil. Vamos então facilitar as coisas, apresentando neste capítulo, noções básicas sobre hardware de PCs. De posse dessas noções, você poderá aprofundar com mais facilidade seus conhecimentos nos capítulos seguintes. Este capítulo é totalmente voltado para os principiantes em hardware. Aqueles que já possuem experiência anterior com o assunto podem passar diretamente ao capítulo 3.
Vamos começar apresentando de forma resumida, as principais peças de um PC. A seguir detalharemos cada uma dessas peças.

PC

Este termo surgiu no final dos anos 70, e é uma abreviatura para “Personal Computer” (computador pessoal). Até então os computadores eram grandes e caros, seu alto custo só era justificado se servisse para atender um grande número de usuários. As pessoas tinham acesso aos computadores de várias formas, a mais comum era através dos terminais de vídeo. Tratava-se de um conjunto de monitor e teclado, através dos quais o usuário podia enviar comandos e obter resultados na tela. Um computador de grande porte custava alguns milhões de dólares e em geral era ligado a centenas de terminais de vídeo.
Um PC era um computador bem mais barato, com capacidade e velocidade mais limitados, mas destinado a atender apenas um usuário. No início dos anos 80, a IBM lançou seu computador pessoal que foi um grande sucesso comercial: o IBM Personal Computer, ou IBM PC. Atualmente a maior parte dos computadores pessoais são “descendentes” do antigo IBM PC. Como hoje existem inúmeros fabricantes além da IBM, esses computadores são chamados apenas de “PCs”. Este livro é dedicado a ensinar o hardware e a montagem de computadores de classe “PC”.

Processador

Este é um dos componentes mais importantes de um PC. O processador é o responsável por executar as instruções que formam os programas. Quanto mais rápido o processador executar essas instruções, mais rápida será a execução dos programas. Alguns exemplos de processadores são: Pentium 4, Pentium III, Celeron, K6-2, Athlon e Duron.
Figura 2.1
Exemplo de processador.
 
 
 

RAM

RAM é um tipo de memória. Para que um programa possa ser executado, ele precisa inicialmente ser carregado na memória. Os dados que esses programas manipulam (por exemplo, textos e imagens) também precisam estar na memória. O tipo de memória usada em larga escala nos computadores é chamada de RAM. A quantidade de memória é medida em MB (megabytes). 1 MB equivale a aproximadamente, um milhão de bytes, e cada byte é uma unidade de memória capaz de armazenar, por exemplo, um caracter (letra, número ou símbolo). Encontramos PCs com 32 MB, 64 MB, 128 MB ou mais. PCs antigos utilizavam quantidades menores de memória, como 16 MB, 8 MB, 4 MB, etc. No início dos anos 80, 1 MB de memória era uma capacidade extremamente elevada para os programas simples que eram usados.  Quanto mais avançados são os programas que queremos utilizar, maior precisa ser a quantidade de memória. Já existem jogos de última geração que para funcionarem com melhor desempenho precisam ter à sua disposição, 256 MB de memória.
Figura 2.2
Módulo de memória.
 

Disco rígido

Assim como a memória RAM, o disco rígido armazena programas e dados, porém existem algumas diferenças. O disco rígido tem uma capacidade milhares de vezes maior. Seus dados não são perdidos quando o computador é desligado, coisa que acontece com a RAM. A memória RAM é muito mais rápida, e é necessário que os programas e dados sejam copiados para ela para que o processador possa acessá-los. Portanto o disco rígido armazena de forma permanente todos os programas e dados existentes no computador. Os programas a serem executados e os dados a serem processados são copiados para a memória RAM, e então o processador pode trabalhar com eles.
Figura 2.3
Disco rígido
 
 

Placa mãe

Também chamada de “Placa de CPU”, é a placa de circuito mais importante de um PC. Nela ficam localizados o processador, a memória RAM e outros circuitos de grande importância. Um bom PC deve ter uma placa mãe de bom desempenho e boa qualidade.
Figura 2.4
Placa de CPU.
 
 

Placa de vídeo

É uma outra placa de circuito, também bastante importante. Ela é a responsável por gerar as imagens que aparecem na tela do monitor. Quando é preciso gerar imagens com muitos detalhes, muito sofisticadas e em alta velocidade, é também preciso ter uma placa de vídeo sofisticada. Hoje em dia existem muitas placas de CPU que possuem embutidos os circuitos de vídeo (vídeo onboard). Esses PCs portanto dispensam o uso de uma placa de vídeo. Ocorre que na maioria das casos, o vídeo onboard é de desempenho modesto, inadequado para as aplicações que exigem imagens tridimensionais com alta qualidade e alta velocidade.
Figura 2.5
Placa de vídeo e detalhe do seu conector.
 
 

Modem

O modem é um dispositivo que permite que o computador transmita e receba dados para outros computadores, através de uma linha telefônica. A principal aplicação dos modems é o acesso à Internet. Quando ativamos uma conexão com a Internet, o modem “disca” para o provedor de acesso, que é a empresa que faz a conexão entre o seu computador e a Internet. O tipo mais comum de modem é aquele formado por uma placa de circuito. Existem outros tipos de modem. O “modem onboard” fica embutido na placa de CPU, e o “modem externo” é um aparelho externo que faz o mesmo trabalho que um modem interno (de placa).
Figura 2.6
Modem interno e detalhe dos seus conectores.
 
 
 

Drive de disquetes

É uma unidade de armazenamento de dados que trabalha com disquetes comuns, cuja capacidade é de 1.44 MB. São considerados obsoletos para os padrões atuais, devido à sua baixa capacidade de armazenamento. A vantagem é que todos os PCs possuem drives de disquetes, portanto são uma boa forma para transportar dados, desde que esses dados ocupem menos que 1.44 MB. Para transportar dados em maiores quantidades, temos que usar um número maior de disquetes, ou então utilizar um meio de armazenamento mais eficiente.
 
Figura 2.7
Drive de disquetes.
 
 

Drive de CD-ROM

Todos os PCs modernos possuem este tipo de drive. Ele permite usar discos CD-ROM, com capacidade de 650 MB. Todos os programas modernos são vendidos na forma de CD-ROMs, portanto sem este drive o usuário nem mesmo conseguirá instalar programas. O drive de CD-ROM é bastante barato, mas não permite gravar dados. Existem entretanto modelos (chamados drives de CD-RW) que permitem gravações, o que os torna um excelente meio para transporte e armazenamento de dados. Com a queda acentuada dos preços desses drives, é possível que dentro de poucos anos, os drives de CD-RW substituam os drives de CD-ROM.
Figura 2.8
Drive de CD-ROM.
 
 

Placa de som

É uma placa responsável por captar e gerar sons. Todos os computadores modernos utilizam sons, portanto a placa de som é um dispositivo obrigatório. Existem muitas placas de CPU com “som onboard”, que dispensam o uso de uma placa de som.
Figura 2.9
Placa de som e detalhe dos seus conectores.
 
 

Placa de rede

É uma placa através da qual PCs próximos podem trocar dados entre si, através de um cabo apropriado. Ao serem conectados desta forma, dizemos que os PCs formam uma “rede local” (LAN, ou Local Area Network). Isto permite enviar mensagens entre os PCs, compartilhar dados e impressoras. PCs utilizados em empresas estão normalmente ligados em rede.
 
Figura 2.10
Placa de rede e detalhe do seu conector.
 
 

Monitor

É o dispositivo que contém a “tela” do computador. A maioria dos monitores utiliza a tecnologia TRC (tubo de raios catódicos), a mesma usada nos televisores. Existem também os monitores de cristal líquido (LCD) nos quais a tela se assemelha à de um computador portátil (notebook). Este tipo de monitor ainda é muito caro, mas nos próximos anos tenderão a substituir os monitores convencionais.
Figura 2.11
Monitor.
 
 

Gabinete

É a caixa externa do computador. No gabinete são montados todos os dispositivos internos, como placa de CPU, placa de vídeo, placa de som, drive de disquetes, drive de CD-ROM, disco rígido, etc. Os gabinetes possuem ainda no seu interior um outro dispositivo importante, a fonte de alimentação. Trata-se de uma caixa metálica com circuitos eletrônicos cuja finalidade é receber a tensão da rede elétrica (110 ou 220 volts em corrente alternada) e gerar as tensões em corrente contínua necessárias ao funcionamento das placas do computador. As fontes geram as tensões de +5 volts, +12 volts, +3,3 volts, -5 volts e –12 volts.
Figura 2.12
Gabinete.
 
 

Teclado

Certamente você não tem dúvidas sobre o que é um teclado de computador. Possuem pouco mais de 100 teclas, entre letras, números, símbolos especiais e funções.
 
Figura 2.13
Teclado.
 
 
Alguns teclados possuem ainda botões para controle de áudio, acesso à Internet e ainda botões para ligar, desligar e ativar o modo de espera. São chamados de “teclado multimídia”.
Figura 2.14
Teclado “multimídia”
 
 

Mouse

Outro dispositivo bastante conhecido por todos aqueles que já tiveram um mínimo contato com PCs. É usado para apontar e ativar comandos disponíveis na tela. A ativação é feita por pressionamento de seus botões, o que chamamos de “clicar”.
 
Figura 2.15
Mouse.
 
 

Impressora

A impressora não faz parte do PC, ela é na verdade um segundo equipamento que se liga ao computador, e serve para obter resultados impressos em papel, sejam eles textos, gráficos ou fotos.
Figura 2.16
Impressora.
 
 

Scanner

Este é um outro dispositivo opcional, que em alguns casos é vendido junto com o PC. Serve para capturar figuras, textos e fotos. Uma fotografia em papel pode ser digitalizada, passando a poder ser exibida na tela ou duplicada em uma impressora.
Figura 2.17
Scanner.
 
 
 

Câmera digital

Uma câmera digital permite fazer fotografias que não são reveladas em um filme ou papel fotográfico. Ao invés disso são transferidas para o computador na forma de arquivos gráficos. Podem então ser visualizadas na tela ou listadas na impressora.
Figura 2.18
Câmera digital.
 
 

Gravador de CDs

Trata-se de um drive de CD-ROM que permite fazer também gravações, utilizando CDs especiais, chamados CD-R e CD-RW. Cada um deles armazena 650 MB, a mesma capacidade de um CD-ROM. A diferença é que o CD-R pode ser gravado apenas uma vez. O CD-RW pode ser gravado e regravado mais de 1000 vezes.
Figura 2.19
Gravador de CDs.
 
 

ZIP Drive

É um tipo especial de drive de disquetes. Entretanto esses disquetes (chamados ZIP Disks) não armazenam simples 1.44 MB, e sim, cerca de 250 MB.
Figura 2.20
Zip Drive.
 
 
 

Estabilizador de voltagem e no-break

Esses dispositivos também são opcionais, mas são muito importantes. Servem para melhorar a qualidade da rede elétrica. O estabilizador serve para atenuar interferências, quedas de voltagem e outras anomalias na rede elétrica. Melhor que o estabilizador, porém bem mais caro, é o no-break. Este aparelho substitui o estabilizador, porém com uma grande vantagem: mantém o PC funcionando mesmo com ausência de energia elétrica.
Figura 2.21
Estabilizadores e no-breaks.
 
 
 

Interfaces

Interfaces são circuitos que permitem ligar dispositivos no computador. Muitas interfaces ficam dentro do próprio computador e o usuário não as vê. São as interfaces internas, como a que controla o disco rígido, a que controla o drive de disquetes, etc. Outras interfaces são usadas para a ligação de dispositivos externos, e são acessíveis através de conectores localizados na parte traseira do computador. É o caso da interface paralela, normalmente usada para a conexão da impressora, as interfaces seriais, que servem para ligar o mouse e outros dispositivos, a interface de vídeo, que serve para ligar o monitor, e assim por diante.
Figura 2.22
Exemplos de conectores encontrados na parte traseira do gabinete.  
 
Terminada esta breve apresentação, passaremos a discutir com mais detalhes as peças mais importantes, a começar pelos processadores.

Processadores

O processador é o componente eletrônico mais importante de um PC. São poucos os fabricantes, e também poucos os modelos disponíveis no mercado. Cada modelo é produzido com diversas opções de velocidade.

Os fabricantes de processadores

Os dois principais fabricantes de processadores são a Intel e a AMD. Cada um deles produz modelos adequados a cada aplicação. Existem modelos básicos, para serem usados nos PCs mais simples e baratos, modelos de médio e de alto desempenho:
Processadores Intel
Modelo
Aplicação
Celeron
Este é o processador mais simples fabricado recentemente pela Intel. Trata-se de uma versão simplificada do Pentium III. A diferença principal é que possui apenas 128 kB de cache L2, enquanto o Pentium III possui 256 kB.
Pentium III
Este é o principal processador da Intel, usado nos PCs de médio e alto desempenho.
Pentium 4
Este é um novo processador recentemente lançado, que deverá futuramente substituir o Pentium III. 
Itanium
Ainda vai demorar um pouco para os usuários de médio porte tenham acesso a este processador. Ao ser lançado terá preços muito elevados, e será destinado a PCs super avançados.
Processadores AMD
Modelo
Aplicação
K6-2
Entre 1998 e 2000 este processador foi muito utilizado nos PCs de baixo custo. 
Duron
O AMD é o substituto do K6-2 para suprir o mercado de PCs simples. Podemos dizer que assim como o Celeron é uma versão simplificada do Pentium III, o Duron é uma versão simples do Athlon, o concorrente do Pentium III produzido pela AMD.
Athlon
Este é o principal e mais veloz processador produzido pela AMD.  

Velocidade do processador

A velocidade de um processador é medida em MHz (megahertz) ou em GHz (Gigahertz). Essas duas grandezas têm o seguinte significado:
1 MHz = 1 milhão de ciclos por segundo
1 GHz = 1000 MHz = 1 bilhão de ciclos por segundo
De nada adianta saber isso se você não sabe o que é um ciclo. O ciclo é a unidade mínima de tempo usada nas operações internas do processador. Assim como um relógio mecânico faz todos os seus movimentos baseados no segundo, o processador faz seu trabalho baseado em ciclos. Por exemplo, para efetuar uma operação matemática simples, o processador demora um ciclo. Operações mais complicadas podem demorar dois ou mais ciclos. Por outro lado, os processadores modernos são capazes de executar duas ou mais operações ao mesmo tempo. Muitos dizem que cada ciclo corresponde a uma operação, mas na verdade pode corresponder a duas ou mais operações, ou até mesmo a menos de uma operação, dependendo do que o processador estiver fazendo. É correto dizer que quanto maior é o número de MHz, maior será o número de operações realizadas por segundo, ou seja, mais veloz será o processador.
A velocidade do processador, medida em MHz ou GHz, é chamada de clock. Por exemplo, o processador Pentium III/900 tem clock de 900 MHz, o Athlon/1200 tem clock de 1200 MHz, ou 1.2 GHz, e assim por diante. A partir de 1000 MHz passamos a usar a unidade GHz. Por exemplo, 1 GHz = 1000 MHz, 1.1 GHz = 1100 MHz, 1.13 GHz = 1130 MHz, etc.
Os fabricantes sempre produzem cada modelo de processador com vários clocks diferentes. O Pentium III, por exemplo, era produzido (até o final do ano 2000) com os seguintes clocks:
500, 533, 550, 600, 650, 667, 700, 733, 750, 800, 850, 866, 900, 1000 MHz
O modelo de 1000 MHz é quase duas vezes mais veloz que o de 500 MHz.

Caches L1 e L2

Quase todos os processadores modernos possuem caches L1 e L2 (alguns como o K6-2, que possui apenas cache L1, por isso utiliza uma cache L2 externa, instalada na placa de CPU). O usuário não escolhe a quantidade de cache que quer no seu computador. Ela é embutida no processador e não há como alterá-la.
A cache é uma pequena quantidade de memória super rápida e cara, que serve para acelerar o desempenho da memória RAM (que por sua vez é maior, mais lenta e mais barata). Ela é necessária porque as memórias comuns não são suficientemente rápidas para os processadores modernos. No início do ano 2000, enquanto as memórias operavam com 100 ou 133 MHz, os processadores operavam com 400 MHz ou mais. No início de 2001, os processadores mais velozes operavam entre 1000 e 1500 MHz, mas as memórias mais rápidas operavam entre 200 e 400 MHz. A cache serve para suprir esta deficiência. Grandes lotes de dados são continuamente lidos da memória RAM e colocados na cache. O processador encontrará então na cache, os dados a serem processados e instruções a serem executadas. Se não existisse a cache o processador teria que trabalhar diretamente com a memória RAM, que é muito lenta, o que prejudicaria bastante o seu desempenho.
A cache L2 acelera diretamente o desempenho da RAM. A cache L1, por sua vez, é ainda mais rápida, e acelera o desempenho da cache L2. Este sistema torna o computador veloz, mesmo utilizando memórias RAM lentas.
De um modo geral, uma quantidade maior de cache L1 e L2 resulta em maior desempenho, mas este não é o único fator em jogo. Também entram em jogo a velocidade (clock) da cache e o seu número de bits. A tabela que se segue mostra características das caches de alguns processadores.
Processador
Tamanho L1
Clock L1
Tamanho L2
Clock L2
Pentium 4
8 kB + 12.000 micro-ops
FULL
256 kB
FULL
Pentium III
32 kB
FULL
256 kB
FULL
Pentium III antigo
32 kB
FULL
512 kB
FULL/2
Celeron
32 kB
FULL
128 kB
FULL
Athlon
128 kB
FULL
256 kB
FULL
Athlon antigo
128 kB
FULL
512 kB
FULL/2
Duron
128 kB
FULL
64 kB
FULL
K6-2
64 kB
FULL
512kB / 1 MB
100 MHz
Observe que a cache L1 de todos os processadores têm uma coisa em comum: sua velocidade é indicada como FULL. Isto significa que a cache L1 sempre trabalha com o mesmo clock usado pelo núcleo do processador. Por exemplo, se um processador opera com 800 MHz, a cache L1 opera com 800 MHz, e assim por diante. Vemos que existem diferenças nos tamanhos das caches L1 dos processadores citados. Processadores com cache L1 maior tendem a levar vantagem sobre processadores com cache L1 menor.
O tamanho da cache L2 varia bastante de um modelo para outro. As primeiras versões do Pentium III tinham cache L2 de 512 kB, mas operavam com a metade do clock do processador (FULL/2). Isto significa que, por exemplo, em um Pentium III/500 antigo, a cache L2 operava com 250 MHz. As versões novas do Pentium III têm cache L2 de apenas 256 kB, mas operando com a mesma freqüência do processador. Situação semelhante ocorre com as versões novas e antigas do Athlon. O Celeron e o AMD Duron também tem caches L2 operando com a mesma freqüência do núcleo. O processador mais fraco da lista é o AMD K6-2. Este processador normalmente trabalha com uma cache L2 externa, instalada na placa de CPU, com 512 kB ou 1 MB. Apesar do seu grande tamanho, esta cache L2 opera com clock de apenas 100 MHz, daí o seu baixo desempenho.

Unidade de ponto flutuante

Todos os processadores usados nos PCs modernos possuem no seu interior, uma unidade de ponto flutuante (FPU = Floating Point Unit). Sua finalidade é a execução de operações matemáticas complexas, como por exemplo, as funções trigonométricas e algébricas, raízes quadradas, potenciação, logaritmos, etc. Também realiza adições, subtrações, multiplicações e divisões de números reais em alta precisão. Todas essas operações matemáticas são necessárias em processamento científico e de engenharia, na geração de imagens tridimensionais e, por incrível que pareça, em jogos! Todos os jogos modernos que usam imagens tridimensionais para serem formadas, necessitam de grande quantidade de cálculos, e a unidade de ponto flutuante trabalha o tempo todo.

Clock externo

Todos os processadores operam com dois clocks diferentes: clock interno e clock externo. O clock interno está relacionado com o número de operações que o processador realiza por segundo. O clock externo está relacionado com o número de acessos externos (principalmente à memória) realizados por segundo. Um processador com clock externo de 100 MHz, por exemplo, é capaz de realizar, pelo menos teoricamente, 100 milhões de acessos à memória por segundo. O clock externo é em geral bem menor que o interno. O valor deste clock externo varia bastante de um processador para outro:
Processador
Clock externo
AMD K6-2
100 MHz
AMD Athlon
200 MHz, 266 MHz, 333 MHz, 400 MHz
AMD Duron
200 MHz
Intel Celeron
66 MHz, 100 MHz
Intel Pentium III
100 ou 133 MHz
Intel Pentium 4
400 MHz, 533 MHz, 800 MHz
É vantagem que o clock externo de um processador seja elevado. Processadores Celeron operam com apenas 66 MHz externos, mas modelos mais recentes operam com 100 MHz. O Pentium III é produzido em várias versões, sendo algumas de 100 e outras de 133 MHz. O K6-2 opera com 100 MHz externos. Os processadores AMD Athlon e Duron operam com 200 e 266 MHz, e existe previsão de lançamento de versões com até 400 MHz.

Memória

A quantidade de memória de um computador é um fator bastante importante. Sua quantidade é medida em bytes ou MB (mega bytes). Como sabemos, um byte é uma unidade de informação capaz de armazenar uma letra, dígito numérico ou caracter. É também capaz de armazenar números pequenos (entre 0 e 255). Números maiores, assim como seqüências longas de texto podem ser formadas com o uso de vários bytes consecutivos.
Imagine que um byte é representado por um pequeno quadrado com 1 milímetro de lado. Um quadrado de 1 metro de lado teria o equivalente a cerca de 1 MB. Se você estiver em  uma sala quadrada com 3 metros de lado e revestisse as quatro paredes, as portas e as janelas com esses “bytes de um milímetro”, seriam necessários 32 MB, quantidade de memória encontrada nos PCs mais baratos vendidos no final do ano 2000.
Normalmente usamos o termo “RAM” para fazer referência a memórias. Esta sigla não explica corretamente a função dessas memórias (RAM = Random Access Memory = memória de acesso aleatório). A memória RAM é usada tanto para leituras quanto para escritas, e é também uma memória volátil, ou seja, seus dados são perdidos quando o computador é desligado. A memória RAM é encontrada com outros nomes, dependendo da tecnologia usada:
SRAM = RAM estática, é usada para formar a cache externa
DRAM = RAM dinâmica, é a mais comum
FPM DRAM e EDO DRAM = Tipos de DRAM usadas em PCs antigos
SDRAM = DRAM síncrona, a mais comum nos PCs modernos
DDR SDRAM = Double Data Rate SDRAM
RDRAM = Rambus DRAM
A maioria dos PCs atuais usam memórias SDRAM. Essas memórias são apresentadas em módulos que recebem o nome de DIMM/168. Por isso são chamadas erradamente de “memórias DIMM”. O tipo de memória é SDRAM, enquanto DIMM é o nome do seu “formato”. Logo serão comuns as memórias RDRAM e DDR SDRAM, mais utilizadas nos PCs acima de 1 GHz devido à sua maior velocidade.

Capacidade e expansão

Podemos encontrar no mercado, módulos de memória com 32 MB, 64 MB, 128 MB e 256 MB. Existem módulos de maior capacidade, porém são muito raros devido ao seu preço elevado e pouca aplicação. Existem ainda módulos antigos com capacidades menores, como 16 MB ou 8 MB, mas são raros, já que não são mais fabricados. As placas de CPU sempre possuem dois ou mais conectores, chamados “soquetes”, que servem para instalar novas memórias. A operação de aumentar a quantidade de memória através da instalação de novos módulos é chamada de “expansão de memória”.

Velocidades das memórias

Para montar um computador é preciso instalar as memorais corretas. Também para fazer uma expansão, é preciso determinar o tipo de memória correto a ser usado, caso contrário o PC poderá ficar lento, ou passar a ter funcionamento instável. No capítulo 7 você aprenderá como distinguir os tipos e velocidades das memórias.

Novos tipos de memória

Memórias PC133 não são as mais avançadas disponíveis. Existem outros tipos capazes de operar com velocidades ainda maiores. Dentro de pouco tempo serão comuns as memórias RDRAM e DDR/266 em uso nos PCs mais avançados. Este aumento de velocidade é necessário, à medida em que são lançados processadores mais velozes.

Memória de vídeo

Trata-se de uma área de memória na qual ficam armazenados os dados que são exibidos na tela do monitor. Quanto maior é a resolução gráfica e maior o número de cores, maior precisa ser o tamanho da memória de vídeo. Esta memória fica localizada na placa de vídeo, que é a responsável pela geração das imagens que vemos na tela. As placas de vídeo 3D, capazes de gerar imagens tridimensionais, precisam quantidades ainda maiores de memória. Para exibir imagens em duas dimensões (por exemplo, páginas da Internet, exibição de fotos e textos em geral), 4 MB de memória de vídeo é uma quantidade bastante adequada. Já a exibição de imagens tridimensionais requer ainda mais memória. São comuns as placas de vídeo 3D com 16 ou 32 MB de memória de vídeo. Algumas mais sofisticadas podem ter quantidades ainda maiores de memória.
Em PCs baratos é comum encontrar o chamado “vídeo onboard com memória compartilhada”. Ao invés de terem uma placa de vídeo com memória própria, possuem um chip gráfico localizado na placa de CPU que usa uma parte da memória que seria do processador, como memória de vídeo. Por exemplo, em um PC com 64 MB, 8 MB podem estar sendo usados como memória de vídeo. Os programas ficam portanto com apenas 56 MB de memória. Este não é o maior problema da memória de vídeo compartilhada. O grande problema é que o processador e o chip gráfico concorrem pelos acessos à mesma memória. Como ambos não podem acessar a memória ao mesmo tempo, um tem que esperar pelo outro. Freqüentemente o processador faz pequenas pausas para que o chip gráfico possa acessar a memória, e como resultado, temos queda de desempenho.

Outras memórias

Quando falamos, por exemplo, “um PC com 64 MB de memória”, estamos nos referindo à memória RAM (SDRAM, RDRAM, DDR), localizada na placa de CPU. Entretanto este não é o único tipo de memória existente em um computador. Existe a memória de vídeo, localizada na placa de vídeo, que também é do tipo RAM. O disco rígido e o drive de CD-ROM também possuem uma pequena área de memória RAM (em geral 512 kB ou 1 MB) chamada de buffer ou cache. Esta área serve para armazenar dados que são lidos do disco antes de serem transferidos para a memória da placa de CPU. Nas operações de gravação, este buffer do disco rígido serve para armazenar dados chegados da placa de CPU antes de serem gravados no disco. Existe ainda a memória ROM, que nunca perde seus dados. Nesta memória está armazenado o programa conhecido como BIOS. Ele é executado assim que o computador é ligado. Faz a contagem de memória RAM, realiza alguns testes no computador e dá início ao carregamento do sistema operacional. Muitas outras memórias são encontradas em outras partes do computador, porém a mais importante de todas é a RAM da placa de CPU.

Disco rígido

Aqui está outro componente importantíssimo de um computador. Dizem por exemplo, “PC Pentium III com 64 MB de memória e disco rígido de 15 GB...”. Em inglês é chamado de hard disk, cuja abreviatura é HD. Portanto o termo “HD” é sinônimo de “disco rígido”.

Capacidade de um disco rígido

É a primeira coisa que pensamos quando falamos em discos rígidos. Até poucos anos atrás, a capacidade de um disco rígido era medida em MB (megabytes). Cada MB equivale a pouco mais de 1 milhão de bytes. Por volta de 1994, eram comuns os discos de 240 MB, 340 MB, 420 MB e 540 MB. Pouco depois chegaram modelos com cerca de 700 MB e finalmente os de 1080 MB. Foi finalmente ultrapassada a barreira de um bilhão de bytes, e a capacidade passou a ser medida em GB (gigabytes). Cada GB equivale a pouco mais de 1 bilhão de bytes. Mais recentemente encontramos no mercado discos de 10 GB, 13 GB, 15 GB, 17 GB, 20 GB e assim por diante. À medida em que os anos passam, novos modelos com capacidades ainda maiores são lançados, ao mesmo tempo em que os modelos com menores capacidades vão deixando de ser produzidos.
PCs modernos precisam ter discos rígidos com elevadas capacidades porque os programas modernos ocupam muito espaço. Em 1994, o pacote Microsoft Office ocupava pouco mais de 30 MB. Em 2000, o pacote Microsoft Office 2000 já ocupava quase 1 GB. Muitos jogos ocupam algumas centenas de MB. Arquivos de som e vídeo também são muito grandes, e ocupam cada vez mais espaço no disco rígido. Outro exemplo é o sistema operacional Windows. As versões mais recentes ocupam, dependendo das opções de instalação, mais de 500 MB.

Estrutura interna de um disco rígido

Dentro do disco rígido existem um ou mais pratos ou discos (também chamamos de “mídia” do disco), nos quais são gravados os dados. Um braço com diversas cabeças que se movem simultaneamente faz movimentos de tal modo que as cabeças podem acessar qualquer região dos discos. Os discos, por sua vez, giram em elevada rotação. Nos modelos mais simples, a velocidade de rotação é de 5400 RPM (rotações por minuto), o mesmo que 90 rotações por segundo. A maioria dos HDs de alto desempenho giram os discos a 7200 RPM, ou seja, 120 rotações por segundo.
Figura 2.23
Interior de um disco rígido.
 
 

Velocidade de um disco rígido

Um disco rígido moderno precisa, além de ter uma elevada capacidade, ter também uma grande velocidade. Em outras palavras, é preciso que o disco seja capaz de ler e gravar dados no menor tempo possível. A velocidade de um disco rígido depende de três fatores:
a) Tempo de acesso
b) Taxa de transferência interna
c) Taxa de transferência externa
Quando o computador busca um arquivo no disco, ele precisa primeiro acessá-los, ou seja, mover as cabeças até o local onde este arquivo está armazenado, para só então fazer a transferência. Portanto as cabeças precisam se mover rapidamente. O tempo médio de acesso é aproximadamente igual ao tempo necessário para mover as cabeças do início até o meio do disco. Este ponto médio é tomado como referência porque alguns arquivos podem estar no início do disco, outros podem estar no final, portanto o meio do disco representa uma média estatística aceitável. Felizmente todos os discos rígidos têm tempos de acesso pequenos, inferiores a 15 ms (milésimos de segundo). Discos de desempenho modesto possuem tempos de acesso entre 10 e 15 ms. Já os de maior desempenho apresentam tempos de acesso entre 5 e 10 ms.
À primeira vista pode parecer que 15 ms é tão bom quanto um de 5 ms. Afinal, que diferença fazem alguns milésimos de segundo a mais ou a menos? Este raciocínio estava correto no passado, quando os programas usavam pouquíssimos arquivos. Os programas modernos acessam um número de arquivos muito maior. O Windows tem mais de 5.000 arquivos, e muitos deles são acessados durante o boot. Durante o uso normal, programas acessam arquivos às centenas. Poucos milésimos de segundo transformam-se então em muitos segundos a mais no tempo total de operação.
O segundo fator de desempenho de um disco rígido é a sua taxa de transferência interna. Ela representa a velocidade na qual os dados são lidos ou gravados na mídia. Nas operações de leitura, os dados são inicialmente transferidos da mídia para uma memória localizada no disco rígido, chamada buffer ou cache de disco. A taxa de transferência interna mede a velocidade na qual os dados são lidos da mídia para esta memória, ou são gravados desta memória para a mídia. Discos com maior velocidade de rotação normalmente possuem maior taxa de transferência interna.
O terceiro fator ligado ao desempenho de um disco rígido é a sua taxa de transferência externa. Representa a velocidade na qual os dados são transferidos entre a memória interna do disco rígido (cache ou buffer de disco) e a memória da placa de CPU. Os discos modernos apresentam três padrões:
Padrão
Taxa máxima teórica
ATA-33 ou Ultra DMA 33
33 MB/s
ATA-66 ou Ultra DMA 66
66 MB/s
ATA-100 ou Ultra DMA 100
100 MB/s
ATA-133 ou Ultra DMA 133 133 MB/s
Todos os discos modernos apresentam taxas de transferência externa elevadas (pelo menos ATA-66). Isto é válido tanto para os modelos mais simples de desempenho modesto, como para os de maior desempenho.

Interfaces para discos rígidos: IDE e SCSI

Tudo o que falamos até agora aplica-se aos discos chamados de IDE (ou ATA), que são usados na maioria dos PCs. A princípio qualquer disco IDE moderno é adequado a qualquer PC simples, e mesmo para os PCs voltados para jogos. Já os PCs de alto desempenho para uso profissional devem usar HDs com menor tempo de acesso e maior velocidade de rotação (que resulta em maior taxa de transferência interna). Discos IDE de alto desempenho são difíceis de serem encontrados no mercado nacional, mas existe uma opção ainda mais veloz, que são os discos SCSI (pronuncia-se “scâzi”).
Se tomarmos dois discos rígidos, um IDE e um SCSI, sendo ambos de mesma capacidade e mesma geração, o modelo SCSI oferecerá desempenho melhor, mas poderá custar quase o dobro. Além disso, precisam ser ligados a uma placa de interface apropriada, que custa caro. Tudo isso torna o uso de discos SCSI uma opção cara, mas o custo é justificado quando queremos alta produtividade.
Uma das vantagens que torna os discos IDE econômicos é o fato de não necessitarem da compra de uma placa de interface, como ocorre com os discos SCSI. Todas as placas de CPU atuais possuem duas interfaces IDE. Normalmente ligamos nessas interfaces o disco rígido e o drive de CD-ROM, que também é IDE. Como cada interface IDE permite ligar dois dispositivos, temos capacidade de instalar até quatro dispositivos IDE. Isto pode ser bastante útil para futuras expansões.

Backup dos dados importantes

Um disco rígido em geral tem muitas informações que podem ser apagadas sem causar prejuízos. Por exemplo, se um programa for acidentalmente apagado, basta instalá-lo novamente. Por outro lado, certas informações ao serem apagadas poderão causar um grande prejuízo. Quanto mais um computador for usado para trabalho (não para lazer, diversão ou ferramenta de consulta), maior será o prejuízo quando seus dados são perdidos.
Qualquer computador corre o risco de perda de dados no disco rígido. Um vírus, por exemplo, pode chegar ao computador através da Internet ou de um disquete contaminado. Felizmente existem métodos de precaução para este problema, mas a maioria dos usuários não os utiliza. Uma pane de hardware no seu disco rígido pode causar perda parcial ou total de dados. Não é um problema comum, mas qualquer aparelho eletrônico tem um pequeno risco de apresentar defeito. Discos rígidos não se consertam, não existem equipamentos apropriados nem peças de reposição no Brasil, apesar de alguns técnicos talentosos fazerem recuperação em alguns casos.
O usuário que tem dados importantes no seu disco rígido não pode correr o risco de perdê-los. Precisa fazer backups periódicos, ou seja, cópias de segurança dos seus dados importantes. Quando a quantidade de dados é pequena, como por exemplo, textos, planilhas ou arquivos gráficos de pequeno tamanho, os disquetes são adequados para as operações de backup. Quando o usuário trabalha com arquivos grandes, outros dispositivos de backup com maior capacidade devem ser usados, como o ZIP Drive e o gravador de CDs. São equipamentos que tornam o PC mais caro, mas muito mais caro seria o prejuízo resultante da perda de dados importantes.

Fabricantes de discos rígidos

Existem vários fabricantes de discos rígidos, mas nem todas as marcas estão disponíveis no Brasil. Esses fabricantes também não possuem filiais no Brasil. O que existem são empresas que importam os discos e os revendem. Os principais fabricantes são Quantum, Seagate, Western Digital, Maxtor, Fujitsu, Samsung e IBM.

Placas de CPU

Esta é a placa mais importante do computador. Para que um PC seja rápido e confiável, é preciso que use uma placa de CPU de alto desempenho e alta qualidade. Mas cuidado: existem no mercado brasileiro, muitas placas de CPU de péssima qualidade.

A placa de CPU “é” o computador

Não existiriam PCs de baixa qualidade se os usuários soubessem disso. É correto dizer que a placa de CPU é a mais importante do computador, mas poderíamos ir ainda mais longe e dizer que um computador nada mais é que uma placa de CPU dentro de uma caixa metálica e com alguns dispositivos ligados ao seu redor. Na placa de CPU ficam localizados o processador, a memória, várias interfaces e circuitos importantes. Praticamente todo o trabalho do computador é realizado por esta placa e seus componentes. Portanto usar uma placa de CPU de baixa qualidade (e em conseqüência, de baixa confiabilidade) coloca a perder toda a confiabilidade e desempenho do computador.

Influência da placa de CPU no desempenho do PC

A maioria dos usuários deseja um computador de alto desempenho. Por isso podem eventualmente pagar um pouco mais caro por um processador mais veloz, escolhendo, por exemplo, um Pentium III/1000 ao invés de um Pentium III/800. O processador é o maior responsável pelo desempenho de um computador, mas ele não é o único. Se a placa de CPU não tiver também um desempenho adequado, ela acabará prejudicando o desempenho do próprio processador. Por isso são muito comuns reclamações como “o Pentium III/800 do meu amigo está mais veloz que o meu Pentium III/800...”.
Algumas placas de CPU são bem projetadas e deixam o processador trabalhar com a sua máxima velocidade. Outras placas são mal projetadas e tornam-se instáveis. Para eliminar a instabilidade, muitos fabricantes fazem pequenas reduções nas velocidades de acesso entre o processador, as memórias e outros componentes da placa de CPU. Como resultado, o desempenho fica prejudicado. Comparando vários modelos de placas similares, porém de fabricantes diferentes, todas utilizando processadores iguais, podemos encontrar diferenças de desempenho de até 20%. Não pense portanto que as placas de CPU são todas iguais, que basta escolher o processador e pronto. É preciso procurar uma boa placa, confiável e rápida.

Uma placa para cada processador

À primeira vista as placas de CPU são bastante parecidas, mas existem muitas diferenças. É preciso levar em conta que cada tipo de processador exige um tipo de placa. Há poucos anos atrás era relativamente fácil, existiam no mercado apenas dois tipos de placa: as placas para processadores 486/586 e as placas para processadores Pentium e similares. Hoje existem diversas categorias  de processadores, e cada um deles requer suas próprias placas de CPU. São os seguintes os tipos de placa:
1) Placas com Soquete 7
Essas placas são usadas para os processadores AMD K6-2. Também permitem instalar outros processadores mais antigos, que já saíram de linha, como Pentium, Pentium MMX, Cyrix 6x86 e Cyrix M II. O K6-2 é o último processador produzido para este tipo de soquete. Com a sua saída de linha, no final do ano 2000, também saíram as placas de CPU para Soquete 7. Hoje encontramos no mercado apenas um estoque residual de processadores K6-2 e placas de CPU que o suportam.
Figura 2.24
Processador AMD K6-2 e o seu Soquete.
 
 
2) Placas com Slot 1
Essas placas são destinadas ao processador Pentium III na versão de cartucho. A maioria delas também aceita os processadores antigos, Pentium II e Celeron na versão cartucho.
3) Placas com Soquete 370
Destina-se aos processadores Celeron e Pentium III nas suas versões mais novas.
4) Placas com Slot A
Os primeiros processadores Athlon utilizavam um formato parecido com o do Pentium III do ponto de vista mecânico, mas diferente do ponto de vista eletrônico.
5) Placas com Soquete A
As versões mais recentes do processador AMD Athlon, bem como o AMD Duron, não usam mais o formato de cartucho. Seu formato é quadrangular, e exigem placas de CPU no mesmo padrão.
Figura 2.25
Processadores Pentium III e Athlon, para Slot 1 e Slot A, respectivamente.
 
 
Figura 2.26
Processadores Pentium III e Duron, para Soquete 370 e Soquete A, respectivamente.
 
6) Soquete de 423 pinos
Este soquete é parecido com o Soquete 370, porém é um pouco maior. Destina-se aos processadores Pentium 4. Depois de 6 meses do lançamento do Pentium 4, a Intel criou o Socket 478 para substituir o Socket 423. Todas as versões mais novas do Pentium 4 usam agora o Socket 478.
Figura 2.27
Processador Pentium 4
 
 
 
Não existem padrões melhores ou piores. O que ocorreu foi uma evolução:
a) Durante a era dos processadores Pentium e Pentium MMX era usado o Soquete 7. O processador AMD K6-2 adotou o mesmo tipo de soquete.
b) O processador Pentium II adotou o formato de cartucho porque era fornecido instalado em uma pequena placa, junto com os chips que formam a cache L2, tudo isso dentro de uma capa metálica.
c) O processador AMD Athlon adotou o mesmo formato de cartucho porque também era produzido instalado em uma placa, juntamente com a cache L2.
d) As versões mais novas dos processadores Pentium III e Athlon, bem como o Celeron e o Duron, não usam mais cache L2 formada por chips adicionais. Ao invés disso essas caches estão embutidas no próprio núcleo do processador. Sendo assim não é mais necessário utilizar o formato de cartucho. O formato quadrangular, bem menor, voltou a ser adequado aos processadores, e portanto esses fabricantes adotaram os padrões Soquete A e Soquete 370.
e) O soquete do Pentium 4 têm mais pinos que o do Pentium III porque sua arquitetura é mais avançada, portanto seus barramentos possuem novos sinais digitais que não estavam presentes no Pentium III.

Slots para expansão

Sobre a placa de CPU (também chamada de placa mãe), fazemos o encaixe das placas de expansão (também chamada de “placas filhas”). São placas de vídeo, placas de som, placas de modem, placas de interface de rede, placas controladoras SCSI e várias outras menos comuns. Nem sempre um PC tem todas essas placas. Em geral os PCs mais simples usam menos placas de expansão, enquanto os mais sofisticados usam mais. As placas de expansão ficam encaixadas em conectores chamados de “slots”.
Figura 2.28
Slots de uma placa de CPU.
 
 
Os três principais tipos de slot são: PCI, AGP e ISA. Os slots PCI são os encontrados em maior quantidade. A maioria das atuais placas de expansão utiliza este padrão. Normalmente as placas de CPU possuem três ou quatro slots PCI. Algumas os possuem em maior número, outras em menor. O outro tipo de slot encontrado nas placas de CPU modernas é o do tipo AGP. Este slot é muito parecido com o PCI, mas opera com velocidade bem mais elevada. É usado para a instalação de uma placa de vídeo 3D padrão AGP, de alto desempenho. Finalmente, encontramos os slots ISA, que são os mais antigos. Este tipo de slot é encontrado nos PCs desde o início dos anos 80. São obsoletos, mas por questões de compatibilidade foram mantidos nas placas de CPU, até pouco tempo. Por volta de 1995 encontrávamos nas placas de CPU, em média 3 slots ISA e 4 slots PCI. Mais recentemente os slots ISA passaram a ser mais raros, muitas placas possuem apenas um ou dois deles. Já existem várias placas de CPU que aboliram totalmente os slots ISA. Também praticamente não encontramos mais no mercado, placas de expansão novas no padrão ISA. Portanto os slots ISA servem apenas para o aproveitamento de placas de expansão antigas.
Figura 2.29
Slots ISA, PCI e AGP.
 
 
A tabela que se segue mostra algumas características dos slots ISA, PCI e AGP. Os slots ISA são de 16 bits (transferem 16 bits de cada vez), enquanto os slots PCI e AGP são de 32 bits. As placas de CPU possuem em geral nenhum, um ou dois slots ISA. Quanto mais nova é a placa, maiores são as chances do fabricante reduzir o número ou eliminar totalmente os slots ISA. Os slots PCI são incrivelmente mais rápidos, podem transferir dados à taxa de até 132 MB/s. A maioria das placas de CPU possui slots PCI em quantidade suficiente para fazer as principais expansões. Finalmente temos o slot AGP, que é sempre único. Serve apenas para a instalação de uma placa de vídeo 3D de alto desempenho. Existem slots AGP e placas de vídeo AGP nos padrões 1X, 2X e 4X. As taxas de transferência podem chegar até cerca de 1 GB/s.
Tipo de slot
Bits
Quantidade
Velocidade
ISA
16
0, 1 ou 2
8 MB/s
PCI
32
3, 4, 5 ou 6
133 MB/s
AGP
32
1
266, 533, 1066 ou 2133 MB/s
Existe ainda um quarto tipo de slot, o chamado AMR (Audio Modem Riser). É encontrado em algumas placas de CPU modernas, e serve para instalar placas AMR, que possuem circuitos de som e modem. Essas placas de expansão AMR são bastante raras, apesar de muitas placas de CPU atuais possuírem slot AMR.
Figura 2.30
Slot AMR.
 
 
 

Interfaces da placa de CPU

A maioria dos dispositivos existentes em um computador necessita de uma interface. A interface é um circuito que permite ao processador comunicar-se com esses dispositivos. Por exemplo, um teclado não pode enviar dados diretamente para o processador. Esta passagem de dados é feita através de um circuito chamado “interface de teclado”, que fica localizado na placa de CPU. Algumas interfaces são placas inteiras, como por exemplo a placa de vídeo. Ela nada mais é que uma interface que serve para enviar dados para o monitor.
Todas as placas de CPU possuem as interfaces descritas abaixo. Mais adiante neste capítulo todas elas serão apresentadas com mais detalhes:
a) Interface de teclado
Seu conector fica localizado na parte traseira da placa de CPU, que corresponde à parte traseira do gabinete. Existem dois tipos de conectores de teclado: os antigos, chamados padrão DIN, e os novos, de menor tamanho, chamados padrão PS/2.
b) Interface para alto falante
Liga a placa de CPU ao pequeno alto falante localizado na parte frontal do gabinete do PC. Os sons gerados por este alto falante são bem simples, bem inferiores aos sofisticados sons emitidos pelos alto falantes ligados na placa de som. Algumas placas de CPU possuem embutido um pequeno alto falante (buzzer), dispensando portanto o alto falante existente no gabinete.
c) Interfaces seriais
Seus conectores também ficam localizados na parte traseira do computador. As duas interfaces serias (normalmente chamadas de COM1 e COM2) servem para ligar diversos tipos de dispositivos seriais, como por exemplo, o mouse.
d) Interface paralela
O conector desta interface também fica localizado na parte traseira do computador. Esta interface é em geral usada para a conexão da impressora.
e) Interface para mouse PS/2
Existem três tipos de mouse. O primeiro é o chamado mouse serial, que deve ser ligado em uma das interfaces seriais, normalmente a COM1. O outro tipo de mouse é o padrão PS/2. Praticamente todas as placas de CPU modernas possuem este tipo de interface. Desta forma as interfaces COM1 e COM2 ficam livres para outros tipos de conexão. O terceiro tipo de mouse, mais recente e ainda um pouco raro, é o padrão USB.
f) Interfaces USB
Praticamente todas as placas de CPU atuais possuem duas interfaces USB (Universal Serial Bus). Este tipo de interface permite conectar diversos tipos de dispositivos, como teclado, mouse, joystick, impressora, ZIP Drive, gravadores de CD, scanners, etc. Uma interface USB permite conectar até 128 dispositivos. Existem planos da indústria para eliminar nos próximos anos, as interfaces seriais, paralelas, de joystick, de teclado e de mouse PS/2, usando em seu lugar, as interfaces USB.
g) Interface para drives de disquetes
Todas as placas de CPU possuem uma interface na qual podemos ligar um drive de disquetes. Apesar de ser um dispositivo obsoleto, o drive de disquetes é barato, sua mídia (ou seja, os disquetes) tem baixíssimo custo.
h) Interfaces IDE
Todas as placas de CPU atuais possuem duas interfaces IDE. Em cada uma delas podemos ligar dois dispositivos IDE, por exemplo, um disco rígido e um drive de CD-ROM.
Há muitos anos atrás, a maioria dessas interfaces não era localizada na placa de CPU, e sim em placas de expansão. Vários motivos levaram os fabricantes a transferi-las para a placa de CPU. Redução de custos e aumento de desempenho são as principais. Uma interface IDE localizada na placa de CPU, por exemplo, tem condições de transferir dados mais rapidamente que uma interface equivalente porém localizada em uma placa de expansão. Outra questão é a simplicidade. Interfaces seriais, paralelas e a interface para drives existentes nos PCs atuais não são muito diferentes das existentes nos PCs de 10 anos atrás. Com a miniaturização dos componentes eletrônicos, tornou-se bastante viável fazê-las em pequeno tamanho, todas dentro de um único e minúsculo chip, dispensando assim o uso de uma placa de expansão.

Novas interfaces onboard

O termo onboard significa na placa. Ao longo dos anos 90, várias interfaces que eram localizadas em placas de expansão foram aos poucos transferidas, com vantagens, para a placa de CPU. Tanto era vantagem esta transferência que as antigas placas de expansão que utilizavam essas interfaces deixaram de ser produzidas. Não encontramos no mercado (exceto em algumas placas bastante raras), placas de expansão com interface para disquetes, interfaces seriais, paralelas e interfaces IDE.
No final dos anos 90, uma nova onda de transferências de interfaces para a placa de CPU começou. Inicialmente surgiram placas de CPU com circuitos de som. Logo alguns fabricantes passaram a produzir chips sonoros de baixíssimo custo para serem usados nessas placas. Eram as chamadas “placas de CPU com som onboard”. Pouco depois foram produzidos chips gráficos de baixo custo para o uso em placas de CPU. Eram as placas de CPU com “vídeo onboard”. Nas primeiras dessas placas, o chip gráfico possuía sua própria memória de vídeo, depois passaram a utilizar parte da memória que era destinada ao processador. São muitos os modelos de placas de CPU de baixo custo (e baixo desempenho) com som e vídeo onboard. Existem ainda alguns modelos que possuem além de som e vídeo, os circuitos de modem e interface de rede onboard.
Ao contrário da passagem das interfaces seriais, paralela, de disquetes e IDE para a placa de CPU, a transferência das interfaces de som, vídeo, modem e rede para a placa de CPU não traz vantagem alguma em termos de desempenho, e sim de custo. Tanto é assim que os fabricantes de placas continuam produzindo centenas de modelos de placas de som, placas de vídeo, placas de rede e modems. Essas placas são de melhor desempenho que os circuitos “equivalentes” existentes nas placas de CPU com “tudo onboard”. São bastante comuns os casos de usuários que compram PCs baratos com todas essas interfaces embutidas e acabam tendo problemas, sendo obrigados posteriormente a comprar placas de expansão de verdade para que funcionem melhor e com bom desempenho.
As placas de CPU com “tudo onboard” destinam-se a serem usadas em PCs de baixo custo e baixo desempenho. A maioria delas destina-se aos países do terceiro mundo. Um PC de 500 MHz com tudo onboard acaba tendo desempenho equivalente ao de um PC de 200 MHz com placas de expansão de verdade. É muito comum o caso de usuários que trocam um PC de 1997, com 166 ou 200 MHz por um modelo novo de 500 ou 550 MHz e percebem que o desempenho é bem similar, ou até menor que o do seu antigo PC.

Padrões AT e ATX

Durante os anos 80 e até a metade dos anos 90, todas as placas de CPU obedeciam ao chamado “padrão AT”. A partir de então entraram no mercado as placas “padrão ATX”, que são as mais comuns hoje em dia. As placas padrão ATX possuem diversas vantagens:
Os conectores ficam na parte traseira, fixos na placa, não havendo a necessidade de uso de cabos internos.
O processador fica sempre próximo à entrada de ventilação da fonte de alimentação, contribuindo para um resfriamento mais eficiente.
Os conectores dos drives e das interfaces IDE ficam sempre na parte frontal, mais próximos dos drives.
Acesso mais fácil aos soquetes das memórias, facilitando as expansões.
Fonte de alimentação com funções especiais de gerenciamento de energia.
O interior de um computador que usa uma placa de CPU ATX é mais organizado, sem aquele “emaranhado” de cabos que existia nos PCs que usavam placas de CPU padrão AT. O resfriamento desses gabinetes é mais eficiente e é mais difícil ocorrerem transtornos mecânicos na montagem. Nas placas de CPU AT, era comum encontrar dificuldades, por exemplo, para instalar placas de expansão muito compridas porque elas esbarravam em outros componentes, como processador e memória. Nas placas padrão ATX, existem normas de altura máxima de componentes de tal forma que não fiquem uns nos caminhos dos outros.

Figura 2.31 -
Placas de CPU AT e ATX.
Além dessas diferenças técnicas, existem também diferenças nas medidas. As placas padrão AT possuem em geral 21 cm de largura. As do padrão ATX são mais largas, como mostra a figura 31.
Ao comprar um computador, dê preferência aos que usam placa de CPU padrão ATX, ou pelo menos, aos que usam placas AT com fonte ATX, o que possibilita o uso das funções de gerenciamento de energia (por exemplo, colocar o computador em modo de espera – fica ativo, com o sistema operacional no ar porém com pouquíssimo gasto de energia).

Fabricantes de placas de CPU

Existem algumas dezenas de fabricantes famosos de placas de CPU. Existem centenas de outros menos famosos, normalmente produzindo placas “sem nome”. Fuja dessas placas sem nome. Entre os melhores fabricantes de placas que podem ser encontradas no Brasil, citamos a Intel, Asus e Soyo. Também são de qualidade bastante satisfatória as placas Gigabyte e FIC, também encontradas no Brasil. Existem outras marcas de primeira linha que infelizmente não são encontradas com facilidade no mercado nacional, como Supermicro, Aopen, Abit, Atrend, Tyan. Infelizmente também encontramos na maioria dos PCs nacionais, placas de marcas que não têm boa reputação entre os usuários: PC Chips e Tomato.

Placas de vídeo

Até o início dos anos 90, o uso dos computadores era baseado em caracteres. Era usado o sistema operacional MS-DOS, totalmente baseado em texto, ou seja, as telas de comando não apresentavam gráficos. Existiam programas que usavam gráficos, como editores de imagens e jogos, mas na maior parte do tempo, os usuários trabalhavam em modo de texto. O Windows começou a ser usado em escala cada vez maior, e seu grande sucesso se deveu, entre outras coisas, ao uso de telas totalmente gráficas, com ícones, figuras e comandos pelo mouse. As placas de vídeo, responsáveis pela geração dessas imagens, tiveram que melhorar muito, para que essas imagens tivessem boa resolução, elevado número de cores, e principalmente, para que sua geração fosse bem rápida.

Aceleração gráfica

Tudo o que vemos na tela fica armazenado em uma área de memória localizada na placa de vídeo, chamada “memória de vídeo”. Nas placas de vídeo antigas, o processador era o responsável pela construção de todas as imagens, sem ter ajuda alguma do chip gráfico. Este chip gráfico existente na placa de vídeo limitava-se simplesmente a transferir os dados da memória de vídeo para o monitor. Isto tudo tornava a geração de imagens muito lenta. O processador da placa de CPU perdia muito tempo “desenhando” o conteúdo da tela, já que esta não era a sua especialidade. Como ficava muito tempo ocupado com esta tarefa, ficava com menos tempo para dedicar à sua tarefa principal, que é a execução de programas.
Para deixar o processador com mais tempo livre para executar os programas e fazer com que a geração das imagens ficasse mais rápida, os chips gráficos passaram a ser processadores gráficos. Eram processadores dedicados a executar em alta velocidade, os comandos relacionados com a manipulação de imagens. Pelo fato de ser especializado nesta tarefa, e também por estar localizado na própria placa de vídeo, o processador gráfico faz este trabalho de forma muito mais rápida que o processador da placa de CPU. Este por sua vez ficava com mais tempo livre para a execução dos programas, deixando a maior parte do trabalho de construir as imagens para o processador gráfico.
Atualmente todos os chips gráficos existentes nas placas de vídeo são processadores gráficos. Além da tarefa simples de ler continuamente a memória de vídeo e enviar seus dados para o monitor, esses chips fazem praticamente todo o trabalho de construção das imagens. Por exemplo, preencher uma área da tela com uma determinada cor, transferir uma porção da imagem de um ponto para o outro da tela, deslocar todo o conteúdo da tela para baixo ou para cima, mover ícones.

Memória de vídeo

O monitor é um dos dispositivos menos inteligentes do computador. Ele se limita a receber continuamente imagens vindas da placa de vídeo e colocá-las na tela. O monitor não “sabe” o que está recebendo. Não sabe a diferença entre textos e gráficos. Não sabe a diferença entre “A” e “B”. Não tem memória, portanto quando acaba de “formar” a tela, precisa receber todo o seu conteúdo novamente. A imagem que vemos na tela é formada por um pequeno ponto luminoso que percorre a tela rapidamente da esquerda para a direita formando linhas, e de cima para baixo até completar a imagem. Este ponto luminoso move-se tão rapidamente que temos a sensação de que a imagem está parada. Dependendo do monitor e da placa de vídeo, a tela inteira é formada de 50 a 100 vezes a cada segundo.
O monitor não memoriza os dados que recebe. O trabalho de memorização das imagens fica por conta da placa de vídeo. Tanto é assim que quando desligamos um monitor e o ligamos novamente, a imagem permanece inalterada. Se a imagem fosse armazenada no monitor, ela seria perdida quando o monitor fosse desligado. Para memorizar a imagem, a placa de vídeo possui uma memória própria, chamada de “memória de vídeo”. Quando um programa quer “desenhar” imagens, basta colocar dados apropriados nesta memória de vídeo. Cada posição na tela corresponde a um trecho desta memória, e cada cor corresponde a um valor. O trabalho de formação das imagens se resume em colocar os valores adequados nos trechos apropriados da memória de vídeo.
No início dos anos 90, encontrávamos placas com 256 kB, 512 kB e 1 MB de memória de vídeo. Em 1995 podíamos encontrar placas de vídeo com 1 MB, 2 MB ou 4 MB. No ano 2000, as sofisticadas placas de vídeo 3D apresentavam em sua maioria, 16 e 32 MB de memória de vídeo. Existem entretanto algumas com quantidades ainda maiores de memória de vídeo.

Resolução e número de cores

Essas são duas características importantíssimas das placas de vídeo. Estão ligadas à qualidade da imagem. Explicando de forma simples, a resolução está ligada ao número de minúsculos pontos que formam as imagens. Quanto maior é a resolução, maior é o nível de detalhamento que as imagens têm. Cada um desses pontos pode assumir um grande número de cores diferentes. Quanto maior for o número de cores permitido, maior será o realismo das imagens.
Agora vejamos de uma forma mais detalhada. Os pequenos pontos que formam as imagens são chamados de pixels. Para definir a resolução é preciso indicar quantos pixels tem a tela no sentido horizontal e quantos pixels tem no sentido vertical. Por exemplo, uma resolução de tela com 640x480 significa que são usadas 480 linhas, cada uma delas formada por 640 pixels. As resoluções mais comuns são: 640x480, 800x600 e 1024x768, as mais usadas nos monitores com telas de 14 e 15 polegadas. Em PCs com monitores de tela grande (17, 19, 20 ou 21 polegadas) e placas de vídeo apropriadas, podem ser usadas resoluções ainda mais altas, como 1280x960, 1600x1200 e até 1920x1440.
O número de cores que um pixel pode ter depende do número de bits que a memória de vídeo reserva para cada pixel. Com 4 bits por pixel, é possível formar 16 cores diferentes. Com 24 bits por pixel, é possível formar cerca de 16 milhões de cores diferentes. A tabela abaixo mostra os principais modos gráficos e o número de cores possíveis em cada caso:
Bits por pixel
Número de cores
Nome do modo
4 bits
16
-
8 bits
256
-
16 bits
65.536
Hi-Color
24 bits
16.777.216
True Color
Para exibição de desenhos, modos gráficos de 4 e 8 bits são adequados, apesar do modo de 4 bits ser bastante limitado, por gerar apenas 16 cores. Para a exibição de fotos, deve ser usado o modo de 16, ou preferencialmente, o de 24 bits.
Quanto maior é a resolução e maior é o número de cores, maior é a quantidade de memória de vídeo necessária. Uma placa com 4 MB de memória de vídeo, por exemplo, pode gerar imagens em True Color com resolução de até 1024x768. Para chegar a resoluções mais altas com o modo True Color, é preciso ter mais memória de vídeo. Felizmente as placas de vídeo modernas possuem no mínimo 16 MB de memória de vídeo (exceto algumas placas de baixíssimo custo).

Modos 2D e 3D

Uma placa de vídeo moderna pode operar em duas modalidades principais: 2D (bidimensional) e 3D (tridimensional). O comportamento da placa é completamente diferente nesses dois casos, principalmente no que diz respeito ao uso da memória de vídeo.
No modo 2D, o conteúdo da memória de vídeo é apenas uma representação direta, pixel a pixel, daquilo que é mostrado na tela. O processador gráfico se encarrega de formar elementos bidimensionais, como retângulos e curvas, além de transferir blocos de dados retangulares, levando em conta apenas duas dimensões: X e Y.
No modo 3D, é tudo mais complicado. A memória de vídeo fica dividida em três partes. Uma é a representação bidimensional daquilo que é mostrado na tela (dimensões X e Y). Esta representação bidimensional é chamada de frame buffer. Outra parte é chamada de Z buffer, uma área que armazena a terceira coordenada (Z) dos elementos de imagem. Juntando as coordenadas X e Y do frame buffer com a coordenada Z armazenada no “Z buffer” temos o conjunto completo de coordenadas tridimensionais: X, Y e Z. A terceira área da memória de vídeo é usada para o armazenamento de texturas. O que uma placa de vídeo 3D faz é basicamente aplicar texturas sobre polígonos. Por exemplo, para desenhar uma parede de tijolos, a placa precisa aplicar o desenho dos tijolos (textura) sobre a parede, que é um polígono 3D. O resultado da aplicação é guardado no frame buffer, para então ser transferido para o monitor.
No modo 2D, a placa de vídeo utiliza apenas o frame buffer. Por isto toda a memória de vídeo está disponível para a formação de imagens. No modo 3D, a memória de vídeo é usada como frame buffer, Z buffer e para armazenamento de texturas. Por isso as placas 3D necessitam de muita memória de vídeo. Uma placa 2D opera muito bem com 4 MB, e melhor ainda com 8 MB de memória de vídeo, mas uma placa 3D precisa ter preferencialmente 16 MB, ou melhor ainda, 32 MB de memória de vídeo.

Placas PCI e AGP

Como já comentamos, as placas de CPU modernas possuem slots PCI e AGP. O slot AGP (Advanced Graphics Port) é destinado a placas 3D de alto desempenho. Uma moderna placa AGP padrão 4x é capaz de receber dados à taxa de mais de 1 GB/s, enquanto uma placa PCI permite apenas 132 MB/s. Para quem quer um elevado desempenho gráfico em 3D, é altamente recomendável usar uma placa de CPU moderna dotada de slot AGP 4x, bem como uma boa placa de vídeo 3D, também 4x. Note que a velocidade do barramento AGP será a máxima permitida em conjunto pela placa de CPU e pela placa de vídeo. Se instalarmos uma placa AGP 4x em um slot AGP de uma placa de CPU que suporta apenas 2x, a transferência de dados pelo barramento AGP será feita no modo 2x, ou seja, 528 MB/s, ao invés dos 1056 MB/s suportados pela placa AGP 4x.
Placas de vídeo 3D padrão PCI são mais lentas e estão no mercado para usuários que possuem PCs antigos, sem slot AGP, e para aqueles que compraram indevidamente PCs novos com vídeo onboard e sem slot AGP.
Figura 2.32
Placas de vídeo PCI e AGP.

Vídeo onboard

Não é nova a idéia de transferir interfaces para dentro da placa de CPU. Muitas placas de CPU atuais possuem vídeo onboard. Essas placas são destinadas a PCs simples para aplicações que não exigem elevado desempenho gráfico. Praticamente todos os fabricantes de placas de CPU oferecem placas avançadas, sem vídeo onboard, para que o usuário instale uma placa de vídeo AGP de seu agrado. Esses mesmos fabricantes de placas de CPU também oferecem modelos mais simples, com vídeo onboard, para serem usados em PCs baratos.
Os chips de vídeo onboard são em geral bastante simples. Muitas vezes são versões compactas de chips gráficos já considerados obsoletos. A coisa funciona assim: um fabricante de chips gráficos vende o projeto dos seus chips antigos para fabricantes de chipsets. Os chamados “chipsets” são os principais chips de uma placa de CPU. Eles possuem as interfaces IDE, controladores de memória, controladores de barramento e outros circuitos importantes. Alguns desses chipsets também possuem no seu interior, circuitos de vídeo. Esses circuitos são de baixo custo, portanto não podem ser equivalentes a chips gráficos de última geração. São em geral similares a chips gráficos que já saíram de linha, com pelo menos 3 anos de mercado. Portanto, usar um vídeo onboard em 2001 pode ser equivalente a usar uma placa de vídeo de 1998, com desvantagens. As placas de vídeo de 1998 pelo menos tinham sua própria memória de vídeo. O vídeo onboard de baixo custo normalmente não possui memória de vídeo própria. Utiliza uma parte da memória que seria destinada ao processador. Isto causa queda de desempenho, tanto para o processador quanto para o chip gráfico.

Chips básicos e avançados

Ao consultar os preços das placas de vídeo avulsas disponíveis no mercado, você encontrará algumas que custam 300 ou 400 reais, outras que custam menos de 100 reais. Vários fatores podem levar a essas diferenças. Uma placa de vídeo mais barata pode ter sido produzida por um fabricante de segunda linha, ou utilizar menor quantidade de memória de vídeo, ou utilizar memórias mais lentas e mais baratas, e principalmente, utilizar um chip gráfico de limitadas capacidades.
Tomemos por exemplo as placas 3D. Sabemos que o principal trabalho de uma placa 3D é aplicar texturas sobre polígonos. Qualquer imagem 3D é composta de um grande número de polígonos com texturas aplicadas a cada um deles. O desempenho de uma placa 3D está relacionado à velocidade na qual realiza a renderização de polígonos (renderização é a operação de aplicar uma textura sobre um polígono). Uma boa placa 3D pode renderizar 10 milhões de triângulos por segundo, enquanto outra pode renderizar apenas 1 milhão de triângulos por segundo. Nesta placa mais lenta (e mais barata), o usuário precisará ajustar os programas para fazer simplificações nas imagens, utilizando um número menor de polígonos. O pneu de um carro, por exemplo, pode precisar ser reduzido a um sólido de 8 faces laterais, e assim não mais parecerá redondo. Em uma placa mais rápida o mesmo pneu poderia ser gerado com 32 faces, por exemplo, dando a sensação visual de que é praticamente redondo. Placas mais lentas obrigam portanto o usuário a fazer simplificações que tiram o realismo das imagens.
Também devido à menor velocidade de renderização de polígonos, uma placa 3D mais simples pode demorar a gerar as imagens estáticas (frames) que formam a imagem em movimento. Para termos uma sensação visual de continuidade de movimentos, as imagens têm que ser geradas na taxa de 30 frames por segundo. Placas mais simples podem conseguir chegar a apenas, digamos, 10 frames por segundo. Ao invés de termos a sensação de continuidade de movimentos, perceberemos que a imagem é formada por saltos. Todos os jogos de ação e programas que geram imagens 3D em movimento serão prejudicados com este efeito.
Para ter qualidade de imagem e continuidade de movimento para imagens 3D, não basta comprar uma placa 3D qualquer. É preciso comprar uma de alto desempenho. As mais baratas são 3D, mas deixam muito a desejar.

Fabricantes de placas de vídeo

Até pouco tempo atrás era fácil indicar uma boa marca de placas de vídeo, disponíveis no Brasil: Diamond. Esta empresa produzia placas de vídeo de alta qualidade e alto desempenho. Oferecia vários modelos de placas, tanto as simples como as de médio e alto desempenho, utilizando os principais chips gráficos do mercado. Infelizmente ocorreu algo lamentável: a Diamond foi comprada pela S3, fabricante de chips gráficos. A partir daí passou a produzir apenas placas de vídeo equipadas com os chips da S3. Os chips gráficos da S3 não são os melhores do mercado. Existem outros melhores, como os da 3DFx (conhecidos como Voodoo) e Nvidia, que fabrica os chips TNT2 e Gforce. As placas Diamond, equipadas com chips da S3, ficaram para trás, na poeira de chips gráficos melhores. Mais recentemente ocorreu mais um golpe na antes bem conceituada Diamond. Sua linha de placas de vídeo foi vendida. É lamentável ver uma antes bem conceituada empresa como a Diamond sendo sucateada.
Enquanto isso outros fabricantes de placas de vídeo continuam no mercado, como ATI, Matrox e Hercules. Essas placas são raras no Brasil. A 3DFx, que antes produzia apenas os excelentes chips gráficos da série Voodoo, agora produz também suas próprias placas. São caras e de alto desempenho, indicadas para aqueles que gostam de jogos. Também com grande destaque está a Nvidia, produtora dos chips TNT2 e Gforce. Esta empresa não produz placas de vídeo, mas apenas os chips gráficos. Vários fabricantes de placas de vídeo estão produzindo modelos equipados com esses chips. Podemos citar a Asus, Creative Labs e Jaton, entre outras.
Você vai provavelmente ouvir muito falar sobre placas de vídeo Trident e Cirrus Logic. Essas empresas também são fabricantes de chips gráficos, e não de placas de vídeo. Vários pequenos fabricantes produzem placas de vídeo utilizando esses chips. São então chamadas de “placas de vídeo Trident” e “placas de vídeo Cirrus Logic”. São na verdade placas de vídeo genéricas equipadas com chips gráficos da Trident e da Cirrus Logic. Essas placas não são as melhores em termos de desempenho, na verdade são bastante modestas. Seu maior atrativo é o preço. Muitos computadores no Brasil utilizam essas placas. Ao tomarem contato com seus gráficos, muitos usuários interessados em programas para 3D acabam ficando decepcionados e fazem a troca por placas melhores, como as da série Voodoo e as equipadas com os chips Nvidia.

Monitores

Ao comprar um monitor, a primeira coisa que um usuário leva em conta é o tamanho da tela. Encontramos com facilidade monitores com telas de 14, 15 e 17 polegadas. Existem ainda monitores com telas maiores, como 19, 20 e 21 polegadas, mas os preços são bem maiores. A princípio o usuário fica maravilhado pela magnífica tela de 17”, mas assustado pelo seu preço, acaba recuando para modelos de 14 ou 15”. Esta análise é superficial. Temos que levar em conta outros dois fatores importantes: a qualidade da imagem e o nível de radiação. Se esquecermos esses detalhes e levarmos em conta apenas o preço, corremos o risco de ter um monitor que causa cansaço visual, e pior ainda, que emite radiação em níveis perigosos, podendo causar doenças oculares.

Tamanho da tela

A tela de um monitor é medida em polegadas. Corresponde à medida da diagonal da tela. Uma polegada equivale a cerca de 2,54 centímetros. Portanto um monitor de 15 polegadas, por exemplo, tem uma diagonal de cerca de 38 centímetros. Telas de grande tamanho oferecem maior conforto visual, principalmente para aqueles que já não enxergam tão bem. Podemos utilizar resoluções mais altas e ter maior número de elementos na tela. Podemos visualizar figuras, tabelas e textos maiores no sentido horizontal, sem a necessidade de “rolar” a imagem pela tela, o que é feito quando temos monitores de tela pequena. Usar telas de maior tamanho possibilita trabalhar mais facilmente e rapidamente com imagens e layouts em geral. Por isso são os mais indicados para as aplicações profissionais como editoração eletrônica, projetos de engenharia e arquitetura com auxílio do computador (CAD), Web Design (projeto de sites para a Internet) e edição de imagens. Para essas aplicações os monitores de tela maior dão maior produtividade ao usuário. Em pouco tempo o valor adicional pago por um monitor de 17" ou maior é compensado pela maior rapidez na execução de trabalhos.
Para aplicações menos vitais, como jogos, aplicações de escritório, acesso à Internet e aplicações pessoais, monitores com telas menores, como 14 ou 15”, são altamente satisfatórios. Atualmente é pequena a diferença entre os preços dos monitores de 14 e de 15 polegadas, portanto vale a pena pagar uma pequena diferença pelo monitor de 15”.

Dot Pitch

A “tela colorida” de um monitor é formada por um grande número de minúsculos pontos vermelhos, verdes e azuis. Conforme o feixe eletrônico da tela atinge esses pontos, eles emitem luz com as cores correspondentes. Através da combinação dessas três cores básicas em quantidades apropriadas, é possível formar praticamente todas as cores que podem ser percebidas pelo olho humano. A tela de um monitor de 14” tem cerca de um milhão desses pequenos conjuntos de pontos. Existem monitores nos quais esses pontos são circulares. Cada grupo de pontos é chamado de Tríade. Os fabricantes desses monitores chamam o tamanho dessas tríades de dot pitch. Os bons monitores modernos apresentam dot pitch entre 0,20 e 0,25 milímetros. Existem ainda monitores nos quais a tela é formada por minúsculas tiras de fósforo vermelho, verde e azul, ao invés de usar os pequenos círculos que forma as tríades. A medida desses pequenos grupos de 3 cores é chamada de grille pitch, e nos bons monitores deve estar entre 0,20 e 0,25 mm. Quanto menores são esses elementos, melhor será a qualidade da imagem.
Figura 2.33
Os pontos de fósforo na tela de um monitor.
 

Freqüências

Esta parte é importante, e se o usuário não prestar atenção, sofrerá de cansaço visual, dores de cabeça e poderá até mesmo prejudicar a visão. A imagem em um monitor é formada por um minúsculo feixe eletrônico que percorre toda a área de tela, da esquerda para a direita, de cima para baixo. Este ponto luminoso percorre a tela tão rapidamente que dá a sensação visual de que a imagem é estável, como se fosse projetada por um slide. Este feixe percorre a tela inteira algumas dezenas de vezes por segundo. Quanto mais rapidamente a tela é preenchida, maior será a sensação de estabilidade. Por exemplo, se tivermos menos de 60 telas por segundo, teremos a sensação visual de que a tela está piscando, cintilando. É um efeito indesejável que chamamos de cintilação ou flicker. Com 50 telas por segundo, o flicker é ainda mais intenso, chega a ser insuportável. Já com 70 telas por segundo, praticamente não percebemos flicker. O ideal é configurar a placa de vídeo para enviar ao monitor, entre 70 e 75 telas por segundo. Valores acima deste não produzem melhoramentos, já que a cintilação não é mais visível. O número de telas percorridas por segundo é chamado de freqüência vertical, taxa de atualização, ou se preferir em inglês, refresh rate.
Ao escolher um monitor, temos que garantir que na resolução mais alta a ser utilizada, a freqüência vertical será de no mínimo 70 Hz (70 telas por segundo). Isto pode ser conferido através do manual do monitor. Nele estão indicadas as resoluções permitidas e as freqüências verticais correspondentes. Um bom monitor de 14” ou 15” deve permitir no mínimo 70 Hz na resolução de 1024x768. Alguns modelos mais simples chegam com 70 Hz apenas na resolução de 800x600, e operam em 1024x768 com apenas 60 Hz, o que resulta em cintilação. Esta é uma diferença entre um monitor mais caro e um mais barato. Para monitores de 17”, é ideal que cheguem com 70 Hz na resolução de 1280x960, mas muitos chegam a 70 Hz em até em 1024x768, e operam em 1280x960 com apenas 60 Hz, o que significa cintilação.

Radiação

Quem não se lembra da mãe gritando “sai de perto da televisão, menino, faz mal ver tão de perto!”. Realmente as telas de TV e de monitores emitem radiações nocivas, principalmente raios X, apesar de ser em pequena quantidade. Mesmo sendo com baixa intensidade, a proximidade entre a tela e os olhos causa perigo em potencial após exposições prolongadas. Para proteger os usuários, foram criados padrões internacionais de segurança, estabelecendo quantidades máximas aceitáveis para que não causem danos à saúde. A primeira dessas normas é a MPR-II. Antes de comprar um monitor, verifique se na sua parte traseira existe uma indicação de certificação MPR-II. Se não encontrar, verifique no seu manual. Se o monitor não for MPR-II, não compre, ele poderá fazer mal à sua saúde.
Além da MPR-II, existe uma outra norma internacional ainda mais rigorosa, pois exige níveis ainda menores de radiação, e medidos a uma distância menor da tela. É a norma TCO (não confundir com TCE, marca de monitor). Verifique na parte traseira do monitor e no seu manual se o mesmo atende a esta norma. Se um monitor é certificado para TCO, automaticamente englobará a norma MPR-II.
Continua...

0 comentários: sobre Como montar um PC - parte 1: Introdução ao hardware de PCs

Postar um comentário para Como montar um PC - parte 1: Introdução ao hardware de PCs

Related Posts Plugin for WordPress, Blogger...