Total de visualizações de página

deixe um OI

Como montar um PC - parte 2: Introdução ao hardware de PCs (continuação)

Gabinetes e fontes de alimentação 


A primeira característica de um gabinete que chama a atenção é o seu tamanho. A figura 34 mostra um típico gabinete mini-torre (mini tower), o mais comum e mais barato. Em geral possui dois locais para instalação de drives de 5 1/4” (drive de CD-ROM, por exemplo), e ainda locais para instalação de drives de 3½”, sendo dois internos e dois externos (usados para drives de disquetes de 3½”, discos rígidos, etc). Não se espante, pois em alguns casos, este tipo de gabinete pode ser ainda mais compacto. Alguns apresen­tam apenas um local para drives de 5 1/4”, outros podem ter apenas dois ou três locais para drives de 3½”. 
Figura 2.34
Gabinete mini torre.
 
Quando é necessário instalar um grande número de drives, sejam eles internos ou não, é recomendado o uso de gabinetes de maior tamanho, como o midi-torre (midi tower) ou o torrão (full tower), mostrados na figura 35. O full tower mostrado nesta figura possui instalados, de cima para baixo, uma unidade de fita DAT de 8 GB, um JAZ Drive de 1 GB, um gravador de CD-R, um drive misto de disquetes (5 1/4” e 3½”), um drive LS-120 e um drive de CD-ROM). No seu interior ainda exis­tem instalados três discos rígidos.
Figura 2.35
Gabinetes torre tamanhos médio e grande.
 
 
Há os que prefiram os gabinetes horizontais (figura 36). Em termos de espaço para instalação de drives, esses gabinetes equiparam-se aos mode­los mini-torre.
Figura 2.36
Gabinete horizontal.
 
 
 
Para quem está interessado em montar um PC moderno, existe um outro detalhe importante. Praticamente todas as placas de CPU atuais são do padrão ATX, e para isso necessitam de gabinete e fonte de alimentação padrão ATX. O formato ATX realmente traz muitas vantagens, e só é justificável usar uma placa de CPU no padrão antigo, ou seja, no formato AT (hoje são poucas as existentes) se for realmente desejá­vel aproveitar um antigo gabinete AT.
Os gabinetes são normalmente vendidos junto com a fonte de alimentação (figura 37). A fonte já é fixa ao gabinete, e possui diversas conexões para alimentar a placa de CPU, drives e demais dispositivos.
Figura 2.37
Fonte de alimentação.
 
 
Todos os gabinetes possuem na sua parte frontal, um painel com botões, LEDs e um pequeno alto falante. Nos últimos anos, era comum encontrar também no gabinete, um display digital para indicação do clock da CPU, uma chave para trancar o te­clado. Atualmente tanto a chave para trancar o teclado quanto o display digital caíram em desuso.

Padrões AT e ATX

Olhando pela parte frontal gabinetes AT e ATX, não conseguimos a princípio notar a diferença. A maior diferença visual está na parte traseira. No padrão ATX, encontramos um grupo de conectores alinhados: teclado, mouse, interfaces USB, interfaces seriais e paralelas. Nos gabinetes padrão AT, esses conectores possuem outra disposição. Podem ficar espalhados em conectores na parte traseira, ou localizados em extensões de placas.
Figura 2.38
Parte traseira de um gabinete AT e de um gabinete ATX.
O gabinete ATX apresenta várias vantagens para quem produz o computador. A montagem é mais fácil, já que os componentes ficam dispostos de forma mais eficiente. Não ocorrerá o caso de um drive ou disco rígido ficar no caminho dos chips de memória, por exemplo. Para o usuário, a adoção do padrão ATX também é vantajosa. Menor aquecimento, facilidade de expansão e o melhor de tudo, as funções de gerenciamento de energia. O computador pode ser colocado em modo de espera, consumindo pouquíssima energia, porém mantendo o conteúdo da memória. Ao terminarmos o modo de espera (pressionando uma tecla qualquer ou movendo o mouse, por exemplo), os circuitos do computador são novamente ligados, sem a necessidade de passar pelo demorado processo de boot. Em 5 ou 10 segundos o computador estará novamente ativo. O uso do gerenciamento de energia é tão vantajoso que os gabinetes que adotam o obsoleto padrão AT também o estão utilizando. São gabinetes padrão AT que usam fontes padrão ATX.

Gabinetes compactos e espaçosos

Muitos produtos eletrônicos não foram projetados para funcionar sob o clima tropical. Isto é particularmente verdadeiro para as peças usadas nos PCs. Muitos computadores estão instalados em ambientes refrigerados, mas muitos ficam “ao natural”, trabalhando em temperaturas em geral superiores a 30 graus, muitas vezes chegando a quase 40 graus. Aí entra em jogo a questão do tamanho do gabinete.
O interior do gabinete é sempre mais quente que a temperatura ambiente. Quanto mais compacto é o gabinete, mais quente tende a ser o seu interior. Em um ambiente a 30 graus, podemos ter o interior de um gabinete espaçoso marcando 35 graus, ou o interior de um gabinete compacto, marcando 40 ou 45 graus. Parece uma diferença pequena, mas não é. Cada grau de temperatura faz uma grande diferença. Some à temperatura interna do gabinete, o calor resultante do aquecimento dos componentes eletrônicos, e veremos que esses componentes poderão chegar facilmente a temperaturas da ordem de 70 graus, o limite de segurança para muitos componentes. Quando um componente opera a uma temperatura mais alta que a máxima permitida, vários problemas ocorrem. Os componentes passam a trabalhar de forma errática, e o computador apresenta os chamados “travamentos”. Isso tudo sem falar na redução da vida útil dos componentes. Depois de alguns meses de uso, podem estragar definitivamente.
Quando usamos no computador, componentes que geram muito aquecimento, é recomendável usar um gabinete de maior tamanho. O chamado “midi” é o ideal. São gabinetes verticais relativamente altos, com cerca de 40 a 50 cm de altura. Os gabinetes “mini torre” são mais baixo, com cerca de 30 a 35 cm de altura. Piores ainda são os gabinetes horizontais, os gabinetes  “slim” e os gabinetes ultra compactos. Quanto menor é o volume livre de ar no interior do gabinete, maior tende a ser o seu aquecimento interno.
Figura 2.39
Formatos de gabinetes (cortesia Microcase).
 
 
Isto não significa que os gabinetes compactos são inadequados. Eles apresentarão aquecimento apenas se usarem componentes que produzem muito calor. Esses componentes são: Placa 3D de alto desempenho, processador veloz, gravador de CDs e disco rígido de alto desempenho. Também é maior o aquecimento quando um PC possui muitas placas de expansão. PCs com essas configurações devem preferencialmente utilizar um gabinete mais espaçoso. Os modelos compactos são mais indicados para PCs com configurações modestas e dispositivos onboard.

Fonte de alimentação

A fonte de alimentação recebe tensão da rede elétrica, em corrente alternada, 110 ou 220 volts, e gera as tensões contínuas que o computador precisa para seus chips. Essas tensões contínuas são +3.3 volts, +5 volts, +12 volts, -5 volts e –12 volts. Uma boa fonte de alimentação deve manter essas saídas constantes, independentemente da quantidade de corrente que os circuitos solicitam, e independentemente (até certo ponto) de variações na tensão da rede elétrica. Digamos por exemplo que um aparelho de ar condicionado é ligado, passando a puxar mais corrente da rede elétrica e causando uma queda de tensão. Ao receber esta redução na tensão de entrada, uma fonte de má qualidade poderá produzir também uma redução nas tensões contínuas geradas. A fonte tensão de +3.3 volts pode ser reduzida para +3.0 volts, por exemplo, provocando erros e mau funcionamento nos componentes do computador.
Outra característica das fontes de alimentação é a sua potência, medida em Watts. São comuns no mercado fontes de 200, 250, 300 e 350 watts. De um modo geral, fontes de maior potência apresentam maior facilidade de regulação, ou seja, são menos sensíveis a variações causadas por interferências e flutuações na rede elétrica. Mesmo assim, não dispense o uso de um bom estabilizador de voltagem.
Quando um computador é muito equipado, com processador veloz, placa 3D de alto desempenho e diversas expansões, é recomendável usar uma fonte de maior potência, como 300 ou 350 watts. Nos PCs mais modestos, fontes de 200 ou 250 watts são suficientes. Em caso de dúvida você sempre poderá comprar fontes de maior potência. Uma fonte só vai fornecer a potência que o computador exigir, portanto uma fonte de 300 watts trabalhará bem mesmo que os componentes do computador estejam exigindo apenas 100 watts. Além disso, praticamente não há diferença entre os preços das fontes menos potentes e os das mais potentes.

Teclado e mouse

O teclado e o mouse são os dois principais dispositivos de entrada de um PC, ou seja, aqueles com o qual o usuário cria dados para o computador. Dentro de mais alguns anos, os comandos de voz tenderão a ser os mais usados (“computador, encontre os relatórios de vendas do primeiro semestre...”). Este dia chegará em um futuro próximo, mas por enquanto temos que nos contentar em usar o mouse e o teclado para informar ao computador o que queremos que seja feito.

Teclado padrão

O teclado padrão usado nos PCs é derivado do IBM Enhanced Keyboard, criado nos anos 80. Este teclado possuía 102 teclas, mas os modelos modernos possuem algumas teclas adicionais, como por exemplo, a tecla “Windows”. Pressionar esta tecla é equivalente a clicar com o mouse sobre o botão Iniciar da barra de tarefas. A maioria dos computadores utiliza teclados do tipo US Internacional. Outros utilizam o teclado ABNT2 (Associação Brasileira de Normas Técnicas). Este teclado é baseado no US Internacional, mas tem algumas teclas em posições diferentes. Possui ainda uma tecla “Ç”, que não é encontrada no teclado internacional. O Windows entende a combinação das teclas ‘ seguida de C como sendo equivalente ao Ç.

Teclados ergonômicos

Ergonomia significa “conforto para o usuário”. Um teclado ergonômico é um modelo que possui uma área de descanso para as mãos e possui as teclas dispostas em grupos que formam um pequeno ângulo, de tal forma que os pulsos não precisam ser flexionados para digitar. Um exemplo típico de teclado ergonômico é o produzido pela Microsoft, mostrado na figura 40. Depois da Microsoft, outras empresas passaram a produzir teclados com características semelhantes.
Figura 2.40
Teclado ergonômico.
 
 
 

Conectores DIN e PS/2

Os PCs dos anos 80 usavam em seus teclados, um conector DIN de 5 pinos. Este tipo de conector era usado em aparelhos de som, e por serem muito baratos e comuns, foram aproveitados para a conexão dos teclados dos PCs. Ao longo dos anos 90, surgiram aos poucos placas de CPU e teclados com conectores padrão PS/2. Ambos os conectores são mostrados na figura 41.
Figura 2.41
Conectores de teclado.
 
 
Ainda hoje encontramos no mercado, placas de CPU padrão AT, com conector DIN para o teclado, e as placas de CPU padrão ATX, com conector de teclado padrão PS/2. Da mesma forma, encontramos teclados à venda com conectores DIN e com conectores PS/2. Quando o conector existente no teclado é diferente do existente na placa de CPU, temos que usar um pequeno adaptador, mas o ideal é que ambos os conectores sejam do mesmo tipo.

Mouse de 2 e 3 botões

O mouse padrão Microsoft possui apenas dois botões. O botão esquerdo é usado para executar comandos e o botão direito é em geral usado para ativar menus. Encontramos entretanto vários modelos de mouse que possuem três botões. Na maioria das vezes o botão do meio fica inativo, mas podemos instalar programas que fazem com que o botão do meio apresente alguma utilidade. O botão do meio pode ser usado, por exemplo, como equivalente a um clique duplo do botão esquerdo.

Mouse com scroll

A Microsoft lançou um mouse que possui na sua parte central, entre os dois botões, um pequeno botão giratório, usado para realizar a operação de scroll, ou seja, para rolar o conteúdo da tela para cima ou para baixo. Logo outros fabricantes passaram a produzir modelos equivalentes. Vale a pena utilizar um mouse com este recurso, pois facilita muito a visualização de textos e páginas longas.
Figura 2.42
Mouse com scroll.
 
 

Conectores DB9 e PS/2

Desde que o mouse se tornou comum, a partir do início dos anos 90, o conector utilizado era do tipo DB9. O mouse era ligado em uma interface serial, normalmente a COM1. A partir de meados dos anos 90, as placas de CPU passaram a apresentar uma interface adicional, própria para a conexão do mouse. Não era exatamente uma interface serial similar à COM1 e à COM2, e sim uma “interface de mouse padrão PS/2”. Quando o mouse é ligado nesta interface, as portas seriais COM1 e COM2 ficam livres para conectar outros dispositivos. Todas as placas de CPU padrão ATX possuem um conector de mouse padrão PS/2, onde podemos ligar um mouse apropriado. Mesmo assim as interfaces seriais COM1 e COM2 continuam presentes nas placas de CPU, e nelas podemos ligar um mouse serial com conector DB9.
Figura 2.43
Conexões para o mouse:
PS2 – Conexão para mouse padrão PS/2
DB9 – Conexão para mouse serial (COM1)
 
 
Tanto o mouse que utiliza conector DB-9 como o que utiliza conector padrão PS/2 são na verdade seriais. Por isso, um mouse com conector padrão PS/2 pode ser ligado, por exemplo na COM1, bastando utilizar um adaptador para esta conexão. Resta ainda lembrar que nos PCs modernos, tanto as interfaces seriais como a inter­face para mouse PS/2 ficam localizadas na placa de CPU.
Figura 2.44 - Detalhe da conexão de mouse conector DB9 (B) nas portas seriais COM1 ou COM2 (A).
 
Figura 2.45 - Detalhe da conexão de mouse com conector PS/2 (A) na interface PS/2 (C) da placa mãe. Para ligar na COM1 ou COM2 é preciso usar um adaptador (B).
Dentro de poucos anos, as interfaces seriais, paralelas, para teclado e mouse PS/2 serão substituídas pelas interfaces USB.

Interfaces

Interfaces são circuitos capazes de controlar dispositivos de hardware. O processador não consegue enviar dados diretamente para uma impressora, para o vídeo, para um disco rígido, nem consegue receber dados diretamente do teclado, do mouse ou de um disquete, por exemplo. Ele precisa contar com a ajuda das interfaces, que são circuitos que fazem este trabalho. Cada interface é especializada no tipo de dispositivo que controla. Não poderíamos, por exemplo, usar uma interface de vídeo para enviar dados para uma impressora, nem receber caracteres de um teclado através de uma interface de mouse.
Algumas interfaces ficam embutidas na placa de CPU. Outras ficam embutidas em outras placas. Certas placas possuem uma única interface (ex: placa de video), outras podem possuir duas ou mais interfaces (por exemplo, as placas de som, além de todas as suas entradas e saídas sonoras, possui uma interface para joystick). Interfaces que controlam dispositivos externos possuem conectores na parte traseira do computador, para a ligação desses dispositivos. São os casos das interfaces de teclado, mouse, impressora, vídeo, joystick, alto falantes, microfone, USB, etc. Outras interfaces controlam dispositivos internos, e por isso seus conectores não ficam à vista, e sim localizados na parte interna do computador. São os casos das interfaces para disquetes, disco rígido e drive de CD-ROM, por exemplo.

Interfaces seriais

As interfaces seriais (ou portas seriais) são normalmente chamadas de COM1 e COM2. Seus conectores ficam localizados na parte traseira do computador e são normalmente do tipo DB-9 macho. Alguns computadores mais antigos usam para a COM1, um conector DB-9, e para a COM2 um conector DB-25, ambos do tipo macho.
Figura 2.46
Conectores externos das interfaces seriais.
 
 
As interfaces seriais são muito antigas, existem nos PCs desde o início dos anos 80. Sua principal característica é que podem transmitir ou receber um bit de cada vez. As interfaces seriais existentes nos PCs atuais podem operar com taxas de até 115.200 bits por segundo, o que é uma velocidade bastante lenta. Mesmo sendo lenta, este tipo de interface é adequada para alguns dispositivos que não necessitam de alta velocidade. É muito grande o número de computadores que usam a interface serial COM1 para conectar um mouse. Existem entretanto várias outras aplicações. Através da interface serial podemos conectar dois PCs para troca de informações, apesar de ser uma transmissão muito demorada. Também com esta conexão é possível utilizar certos jogos com dois jogadores, um em cada PC.
Nos próximos anos, os PCs não utilizarão mais interfaces seriais. Suas funções passarão a ser desempenhadas pelas interfaces USB. Tanto é assim que todos os PCs modernos possuem interfaces USB, e todos os fabricantes de dispositivos seriais estão produzindo modelos USB.

Interface paralela

A interface paralela também pode ser chamada de porta paralela, interface de impressora ou porta de impressora. As referências às impressoras devem-se ao fato desta interface ter sido originalmente criada para a conexão de impressoras. O nome “paralela” foi usado porque esta interface transmite 8 bits de cada vez, em contraste com as interfaces seriais, que transmitiam um bit de cada vez. Esta não é a única interface paralela que existe, e também não serve apenas para conectar impressoras, portanto ambos os nomes, apesar de consagrados, não são bem adequados.
Figura 2.47
Conector externo da interface paralela.
 
 
O conector da interface paralela fica localizado na parte traseira do computador. É um conector do tipo DB-25 fêmea. As interfaces paralelas antigas podiam transmitir apenas 150 kB/s, mas as atuais, operando nos modos EPP e ECP, podem transmitir 2 MB/s, mas para isso precisam de um cabo especial, chamado Cabo IEEE 1284. Muitas impressoras são acompanhadas deste cabo, outras não. Infelizmente no comércio brasileiro não encontramos este cabo à venda, pois os vendedores e importadores não têm conhecimento técnico para entender a diferença entre um cabo IEEE 1284 e um cabo de impressora comum. Operar nos modos EPP e ECP usando um cabo de impressora comum muitas vezes funciona, mas a impressora pode apresentar várias anomalias, como impressão de dados errados, por exemplo. A solução “suja” para o problema é configurar a interface de impressora para operar em baixa velocidade, o que elimina os erros. A solução ideal é comprar uma impressora já com o cabo apropriado, ou então aproveitar uma viagem aos Estados Unidos para comprar um cabo IEEE 1284, disponível em qualquer loja de produtos de informática, lá.
Além da impressora, outros dispositivos podem ser ligados na porta paralela. Podem inclusive ser ligados em conjunto com a impressora. Existem scanners, unidades de disco removível (ZIP Drive), gravadores de CDs, câmeras digitais e outros produtos que compartilham a porta paralela com a impressora. Do computador parte um cabo para o dispositivo, e do dispositivo parte outro cabo para a impressora. Na maioria dos casos este compartilhamento funciona bem, mas existem alguns casos em que ocorrem conflitos, impedindo o correto funcionamento da impressora ou do dispositivo.

Interface USB

As interfaces seriais, paralelas, de teclado e  de joystick usadas nos PCs, são praticamente as mesmas usadas no início dos anos 80. São interfaces obsoletas para os padrões atuais. Apesar de funcionarem, não apresentam os recursos avançados que a eletrônica moderna permite. Em meados dos anos 90, a Intel criou uma nova interface mais moderna, versátil e veloz, a chamada USB (Universal Serial Bus). Tanto os fabricantes de placas de CPU e computadores quanto os fabricantes de periféricos (teclado, mouse, impressora, etc.) demoraram um pouco a adotá-la. Hoje encontramos interfaces USB em todos os PCs modernos, e praticamente todos os fabricantes de periféricos produzem modelos USB. É possível produzir um computador com todos os periféricos externos no padrão USB, o que será cada vez mais comum nos próximos anos.
Figura 2.48
Conectores das interfaces USB.
 
 
Os PCs modernos possuem duas interfaces USB, acessíveis através de dois conectores localizados na sua parte traseira. Cada uma delas permite ligar até 128 dispositivos, através de um pequeno hub, que deve ser adquirido separadamente. Obviamente para ligar todos os 128 dispositivos é preciso utilizar vários hubs em cascata.
As interfaces USB atuais operam com cerca de 1,2 MB/s, velocidade mais que suficiente para dispositivos como teclado, mouse, joystick, modem externo, WebCAM (câmera para transmitir imagens via Internet), impressora, scanner, gravador de CDs e vários outros produtos. Em breve serão lançadas interfaces USB com velocidades ainda maiores.
As interfaces USB possuem ainda outros recursos úteis, como o Hot Swap. Podemos conectar e desconectar dispositivos com o computador ligado. Se fizermos isto com a impressora, teclado, mouse e outros dispositivos não USB, corremos o risco de queimá-los. As interfaces e os dispositivos USB entendem-se perfeitamente e foram projetados para permitir as conexões sem a necessidade de desligar os equipamentos.

Interface IDE

Todas as placas de CPU atuais possuem duas interfaces IDE. Em cada uma delas podem ser ligados dois dispositivos, portanto um PC típico pode ter até 4 dispositivos IDE. Os mais comuns são o disco rígido e o drive de CD-ROM, mas podemos instalar mais dois, como um gravador de CDs e um ZIP Drive IDE.
Figura 2.49
Conectores internos das interfaces IDE.
 
 
 
Os conectores das interfaces IDE não são visíveis pelo exterior do computador. Como o disco rígido, o drive de CD-ROM e outros dispositivos IDE são internos, todas as conexões ficam no interior do computador.
Uma das principais características das interfaces IDE (também chamada de ATA) é a sua velocidade. Até 1997, as interfaces IDE operavam no máximo com a taxa de 16,6 MB/s. Este modo de transmissão é chamado de PIO Mode 4. No início de 1998 eram comuns as interfaces e dispositivos IDE que operam no chamado modo ATA-33, ou Ultra DMA 33. A taxa de transferência é de 33 MB/s. No final de 1999 eram comuns os modelos ATA-66 ou Ultra DMA 66, operando com 66 MB/s. A seguir surgiram os modelos ATA-100, operando com 100 MB/s. O lançamento de versões com velocidades mais elevadas é conseqüência direta do aumento da capacidade dos discos rígidos. Sua capacidade aumenta porque os programas usam arquivos grandes e em grande número. Portanto a quantidade de dados acessados é maior. Se a velocidade dos discos não for aumentada, o acesso a esses dados será cada vez mais demorado. Podemos portanto esperar o lançamento de discos IDE (ou de outros tipos que os substituam no futuro) cada vez mais rápidos.

Interface para drives de disquetes

Todas as placas de CPU possuem uma interface para drive de disquetes. Seu conector fica no interior do computador, e através dele e de um cabo apropriado, podem ser controlados um ou dois drives de disquetes. Como nenhum computador moderno opera utilizando dois drives de disquetes, já existem algumas placas de CPU com interfaces que não reconhecem um eventual segundo drive.
Figura 2.50
Conector da interface para drives de disquetes.
 
 

Interface para teclado

Do ponto de vista eletrônico, as interfaces de teclado de todos os PCs são idênticas. Ficam localizadas na placa de CPU, e seu conector fica na sua parte traseira, ou seja, é acessível pelo painel traseiro do gabinete. Existem entretanto diferenças nos tipos de conectores. As placas mais antigas utilizavam um conector padrão DIN, de 5 pinos. As mais novas utilizam um conector menor, chamado padrão PS/2. Como os teclados são eletronicamente semelhantes e a diferença entre os conectores é apenas física, podemos ligar qualquer tipo de teclado (DIN ou PS/2) em qualquer tipo de placa de CPU. Se os conectores forem diferentes, basta usar um adaptador. Existem duas versões deste adaptador: DIN-PS/2 e PS/2-DIN. Explicando melhor, “placa de CPU com conector DIN para teclado com conector PS/2” e “placa de CPU com conector PS/2 para teclado com conector DIN”. Explique ao vendedor na hora de comprar.
Figura 2.51
Conectores da interface para teclado.
No computador da direita, temos um conector DIN. No da esquerda, o conector do teclado é do tipo PS/2.

Interface para joystick

A interface para joystick está normalmente localizada na placa de som. Pode também estar localizada na placa de CPU se esta tiver “som onboard”. O seu conector é externo, fica sempre acessível pelo painel traseiro do computador, na placa de som ou na placa de CPU. É um conector do tipo DB-15 fêmea, menor que o conector da impressora (que é DB-25) e maior que os conectores das portas seriais (DB-9).
Figura 2.52
Conector da interface para joystick.  
 
Neste conector podemos ligar um único joystick, de até 8 botões, ou então ligar dois joysticks, com 2 botões cada um, através de um cabo especial comercializado por algumas lojas (Cabo em “Y” de extensão para joystick). Ao invés do joystick (aquele que possui uma alavanca ou “manche”), encontramos também os chamados joypads (controle de jogo), que não possuem alavanca, e sim um pequeno botão em forma de “+” para comandar a direção, similar ao utilizado por consoles de videogames. Um usuário que goste muito de jogos poderá precisar comprar mais de um controle de jogo. Alguns jogos funcionam melhor com joysticks, outros funcionam melhor com joypads.

Interfaces onboard

A rigor, uma interface “onboard” é qualquer interface localizada na placa de CPU. Desde o início dos anos 80 a interface de teclado é onboard. Nunca foram produzidos PC com interfaces de teclado localizados em uma placa de expansão. Naquela época existiam placas de expansão com interfaces para drives de disquetes, disco rígido, seriais e paralela. Por volta de 1995 tornaram-se comuns as placas de CPU com todas essas interfaces embutidas, exceto a interface de joystick, que permaneceu na placa de som (apenas nas placas de CPU mais recentes a interface de joystick passou a ser incluída). A passagem de uma interface de uma placa de expansão para a placa de CPU sempre uma característica: redução de custo sem prejudicar o desempenho. As interfaces seriais, paralelas e de drives de disquetes, por exemplo, apresentam o mesmo desempenho que as equivalentes localizadas em placas de expansão. Já a interface de disco rígido das placas de CPU apresentam desempenho igual ou melhor que as localizadas em placas de expansão. Até as memórias eram no passado localizadas em placas de expansão, e foram transferidas para a placa de CPU, o que resultou em grande aumento de desempenho e redução de custo.
Mais recentemente, outras interfaces que antes eram localizadas em placas de expansão foram, não transferidas definitivamente para a placa de CPU, mas passaram a ser oferecidas em duas opções: em placas de expansão, para os PCs mais potentes, e na própria placa de CPU, para os PCs mais baratos. São as interfaces de vídeo, som, modem e rede. Uma placa de CPU com todas essas interfaces embutidas acaba resultando em boa economia, mas o desempenho dessas interfaces nem sempre é satisfatório. Daí surgiram os termos “vídeo onboard”, “som onboard”, e assim por diante. Hoje em dia quando alguém usa o termo “onboard”, está se referindo a essas interfaces.
Em muitos casos os circuitos de som, modem e rede onboard são formados por chips similares aos encontrados nas placas de expansão de baixo custo. Algumas dessas placas podem ser vendidas com ou sem esses circuitos (com som ou sem som, com modem ou sem modem, etc.). Não significa que podemos pedir ao vendedor para colocar os chips desejados. As placas saem da fábrica nas versões “com som” e “sem som”, por exemplo. Em uma placa com som onboard vendida “sem som”, fica um espaço vazio onde deveria estar o chip de som. O usuário não pode comprar e instalar este chip, deve decidir o que quer na hora da compra.
Já os circuitos de vídeo onboard são normalmente localizados no próprio chipset da placa de CPU (mais adiante veremos o que é um chipset). Não podemos escolher entre as opções “com vídeo” ou “sem vídeo”. Se uma placa de CPU tem vídeo onboard, ela sempre terá os circuitos de vídeo, não existindo a opção de uma versão sem este chip.
Note que nem sempre onboard é sinônimo de ruim. É tecnicamente possível produzir uma placa com som, vídeo, rede e modem onboard de alto desempenho, entretanto o custo não é baixo. Em caso de dúvida, leve em conta que as placas de CPU de menor custo são as que têm circuitos onboard de baixo desempenho.

Alguns tópicos avançados

Se você já aprendeu o que ensinamos até agora, já tem um conhecimento sobre hardware acima da média. Vamos agora complementar com mais alguns conceitos avançados que você precisa conhecer.

Chipsets

Os primeiros PCs tinham, além do processador e das memórias, dezenas de outros chips. Com muitos chips, maiores eram as chances de ocorrerem defeitos, maior era o custo e o tamanho das placas. Vários fabricantes produziram chips especiais que tinham os mesmos circuitos que as dezenas de chips usados nos PCs. Isso resultou em redução de preço, redução de tamanho e aumento da confiabilidade das placas de CPU. Melhor ainda, possibilitou a criação de novas placas mais sofisticadas, com muito mais circuitos, além de serem bem mais rápidas. Esses chips especiais são conhecidos como chipsets. Normalmente são um conjunto de dois ou três chips, que ligados a um processador e às memórias, além de alguns poucos chips especiais, realizam todas as funções de uma placa de CPU.
Figura 2.53
Chipset.
 
 
Os principais fabricantes de chipsets para placas de CPU são a Intel, VIA e SiS. Normalmente a Intel produz os modelos mais avançados, que logo depois são produzidos em versões similares pela VIA. A SiS é mais conhecida por produzir chipsets para placas de CPU de baixo custo, estando em geral um passo atrás da Intel e da VIA. Se você vai comprar um PC de baixo custo, é aceitável optar por um modelo com chipset SiS, mas se procura um modelo avançado, escolha uma placa de CPU com chipset Intel ou VIA.

BIOS

O BIOS é um programa que fica armazenado em uma memória ROM, localizada na placa de CPU. BIOS significa Basic Input-Output System, ou seja, sistema básico de entrada e saída. É correto dizer “o BIOS”, e não “a BIOS”. Pelo fato de estar armazenado em uma memória ROM, o BIOS não é apagado quando o computador é desligado. Ele é executado assim que o computador é ligado. É o responsável por realizar o teste de memória, ativar as principais interfaces e iniciar a carga do sistema operacional.
Figura 2.54
Memória ROM da placa de CPU, onde fica armazenado o BIOS.
 
 
Na mesma ROM onde fica armazenada o BIOS, temos também um programa para definir configurações de hardware. Este programa é chamado CMOS Setup. Nele podemos definir a data e a hora, indicar os discos rígidos presentes e escolher várias opções de funcionamento, como a velocidade das memórias e outros tantos detalhes.

DSP e HSP

Os modems possuem um chip especial chamado “processador de sinais digitais” (em inglês, digital signal processor, ou DSP). Este chip é na verdade um processador que opera com o seu próprio BIOS e sua própria memória RAM. Seu trabalho é receber os sinais provenientes da linha telefônica, identificar os sinais digitais que representam, realizar a descompressão de dados e a correção de erros. Na transmissão de dados, realiza a conversão dos sinais digitais para o formato analógico, faz a compressão de dados e controla a correção de erros de comunicação. É trabalho suficiente para deixar um processador bastante ocupado. O processador da placa de CPU não precisa se preocupar com esses detalhes. Basta enviar para o modem os dados a serem transmitidos, e o DSP faz todo o trabalho de transmissão. Na recepção, o DSP também faz todo o trabalho, e entrega os dados recebidos para o processador da placa de CPU.
Visando reduzir os preços dos modems, vários fabricantes produziram modelos sem DSP. Isso mesmo, eles não têm um processador de sinais digitais para fazer todo o trabalho pesado da comunicação de dados. Este trabalho precisa ser feito pelo processador da placa de CPU, por isso esses modems são chamados de HSP (Host Signal Processor). Também são conhecidos como “soft modems” e “Winmodems”. A desvantagem é que o processador fica com menos tempo disponível para a execução de programas, já que precisa fazer o trabalho que seria do DSP. Modems que possuem DSP são mais caros, porém muito melhores. Alguns fabricantes os chamam de “Comtroller modems”. Ao comprar um modem em uma loja, você irá constatar que os vendedores não sabem a diferença. Costumam usar o tempo “modem para 486”, para designar os modelos com DSP. São chamados assim porque os soft modems requerem processadores bem rápidos para fazer o trabalho que seria do DSP, portanto não funcionam em PCs 486.

Memória virtual

Digamos que o seu computador tenha apenas 32 MB de memória, mas que você vai executar vários programas ao mesmo tempo, que necessitariam juntos de 80 MB. Antigamente quando tentávamos executar um programa e não existia memória livre, aparecia uma mensagem de erro: memória insuficiente. Sistemas operacionais que permitem executar vários programas ao mesmo tempo utilizam um artifício para contornar a situação. Normalmente o usuário não opera vários programas ao mesmo tempo, e sim deixa alguns programas parados enquanto envia comandos para outro. Os programas que estão parados não precisam ser finalizados, e nem precisam ficar ocupando espaço na memória. A área de memória que estão usando pode ser copiada para uma área especial do disco rígido, chamada “arquivo de permita” (swap file). Este arquivo pode ser bem maior que a memória real instalada no computador.
Com isso temos a sensação que a quantidade de memória é bem maior. Esta é entretanto uma memória virtual. Sempre que o processador precisa executar trechos de programas que estão no arquivo de permuta, precisa encontrar uma área de memória real (RAM) livre para copiar as informações, para só então processá-las. Quando um computador usa muito a memória virtual, acaba ficando muito lento, devido à grande quantidade de acessos a disco. Melhor seria instalar mais memória RAM. Com mais memória disponível, menor será a necessidade de usar a memória virtual, e o desempenho do PC será melhor.

Driver

Não confunda “driver” com “drive”. É correto dizer “drive de disquetes” ou “drive de CD-ROM”. O drive é uma unidade na qual são colocados discos ou outro meio de armazenamento de dados. Já o termo “driver” é algo completamente diferente. Trata-se de um software que faz com que o sistema operacional utilize um determinado dispositivo de hardware. Para uma impressora funcionar, é preciso que seja instalado o seu driver, para uma placa de vídeo funcionar é preciso que seja instalado o seu driver, para que os dispositivos da placa de som funcionem, é precisam que sejam instalados os seus drivers. É muito comum as pessoas confundirem os dois termos. Na tradução do filme “Assédio Sexual”, o Micheal Douglas diz para Demi Moore que “os drivers têm que ser de no mínimo 100 ms...”. Ele estava falando sobre drives de CD-ROM, então deveria ter sido traduzido como “drives”, e não “drivers”.
Sempre que compramos um dispositivo de hardware, ele vem acompanhado com um disquete ou CD-ROM no qual está o driver que permite o seu funcionamento no Windows e em outros sistemas operacionais. Muitos sistemas, como é o caso do Windows, já são acompanhados de drivers para centenas de dispositivos de hardware. Quando o sistema não possui os drivers apropriados, temos que utilizar aqueles que os fabricantes fornecem, no disquete ou CD que acompanha o dispositivo de hardware que queremos instalar. Em alguns casos de mau funcionamento, os problemas são resolvidos através da instalação de drivers atualizados. Todos os fabricantes disponibilizam através dos seus sites na Internet, drivers atualizados para seus produtos, nos quais eventuais problemas são corrigidos.

VGA e Super VGA

Desde os anos 80 existem placas de vídeo e monitores VGA. Tanto as placas como os monitores operavam com resolução máxima de 640x480, porém com apenas 16 cores. Podiam utilizar até 256 cores, desde que a resolução fosse mais baixa: 320x200, normalmente utilizada por jogos. No final dos anos 80 surgiram placas de vídeo capazes de operar com 256 cores também na resolução de 640x480, depois em 800x600 e 1024x768. Qualquer placa de vídeo capaz de operar com resoluções maiores de 640x480, e com mais de 16 cores nessas resoluções, era chamada de Super VGA (SVGA). Alguns fabricantes usavam nomes parecidos, como Ultra VGA, Hiper VGA, ou até VGA Wonder. Todas podem ser informalmente chamadas de Super VGA. Atualmente todas as placas de vídeo são SVGA, porém bem mais avançadas. Alguns fabricantes mais modestos continuam chamando suas placas e monitores de VGA, mas como os modos gráficos são superiores aos das placas VGA originais, o correto seria chamá-los de Super VGA.

Monitor não entrelaçado

Os primeiros monitores Super VGA chegavam no máximo à resolução de 800x600, com alguma cintilação. Não conseguiam chegar à resolução de 1024x768, pois a cintilação seria insuportável. Além disso perderiam o sincronismo se os fizéssemos operar nessas resoluções. Para permitir o uso da resolução de 1024x768 nesses monitores antigos, os fabricantes de placas de vídeo utilizaram o chamado modo entrelaçado. Consiste em usar a resolução de 1024x768, mas formando inicialmente as 384 linhas ímpares, depois as 384 linhas pares, e assim sucessivamente. Assim os monitores conseguiam operar com 1024x768, apesar de ser no modo entrelaçado. A qualidade da imagem é bastante inferior. Os fabricantes de monitores produziram modelos capazes de operar com 1024x768, sem usar a varredura entrelaçada. A imagem ficava melhor, mais nítida e estável. Eram chamados de monitores não entrelaçados. Até hoje encontramos esses termos em uso. Um monitor não entrelaçado oferecerá imagem melhor nas resoluções mais altas. Isto não chega a ser uma vantagem nos dias atuais, pois praticamente todos os monitores são “não entrelaçados”.

Monitor digital

O monitor digital é aquele que possui controles frontais digitais. Os monitores antigos possuíam potenciômetros para controlar o brilho, contraste, largura e altura, linearidade da imagem, etc. Praticamente não existem mais monitores assim. Os modelos atuais possuem botões que indicam cada função, e controles “+” e “-“ para aumentar ou diminuir cada característica da imagem, da mesma forma como temos botões “+” e “-“ para aumentar e diminuir volume, brilho, contraste, nitidez e outras características nos atuais aparelhos de TV. 
Figura 2.55
Controles de um “monitor digital”.
 
 
 

Gerenciamento de energia

Antigamente os aparelhos eletrônicos só podiam assumir dois estados: ligado e desligado. Aos poucos surgiram aparelhos que usavam um terceiro estado: standby, ou estado de espera. Neste estado, o equipamento fica parcialmente ligado, pronto para receber comandos, mas com seus principais componentes consumidores de energia desligados. Este estado foi introduzido também nos computadores, primeiro nos portáteis, pois a economia de energia é importante para aumentar a duração das baterias, depois nos computadores de mesa. Hoje todos os PCs possuem funções de gerenciamento de energia, e podem ser colocados no estado de espera. Podemos programar o PC para, em caso de inatividade prolongada (isto é, se ficarmos muito tempo sem usar o teclado e o mouse), entrar no modo de espera. Podemos ainda usar o botão liga/desliga, não para ligar e desligar o computador, mas colocá-lo e retirá-lo do modo de espera. Quando o PC é colocado em modo de espera, o conteúdo da memória é preservado, o processador paralisa suas atividades e quase todos os circuitos são desligados. Ao pressionarmos uma tecla, ou movermos o mouse, ou pressionarmos o botão liga/desliga, o PC precisará apenas de 5 ou 10 segundos para voltar ao estado “ligado”, sem precisar passar pelo demorado processo de boot.

ISDN

Linhas ISDN são bem parecidas com as linhas telefônicas, porém são mais rápidas e possuem confiabilidade maior. Ao contrário das linhas telefônicas comuns, as linhas ISDN foram criadas especificamente para transmitir dados digitais. A taxa de transmissão dessas linhas é de 128 kB/s, e não sofrem dos vários problemas pelos quais passam as linhas comuns. Essas são as verdadeiras linhas digitais, usadas por empresas que precisam de conexões com alta confiabilidade. As linhas telefônicas comuns, porém de centrais mais novas, que são chamadas na gíria de “linhas digitais”, na verdade não são digitais, e sim analógicas. A diferença é que as suas centrais telefônicas são digitais, portanto seria certo chamá-las de “linhas de central digital”.
As linhas ISDN são verdadeiramente, e totalmente digitais. Para usá-las é preciso utilizar um modem ISDN. Este tipo de modem é bastante caro, e o custo dessas linhas também é bastante elevado. O custo alto só é justificado para empresas que precisam de conexões de alta confiabilidade. Entretanto com a expansão das telecomunicações, é provável que tenhamos em breve linhas ISDN de baixo custo, além de outros meios de comunicação de alta velocidade e preços acessíveis para o grande público.

Desfragmentação

A desfragmentação é uma espécie de “arrumação na bagunça do disco rígido”. A bagunça começa quando começamos a excluir arquivos. Quando um arquivo é excluído, o espaço antes ocupado fica livre para a gravação de novos arquivos. Suponha que você apagou três arquivos localizados em áreas diferentes do disco, um arquivo A com 100 kB, outro B com 200 kB e outro C com 400 kB. Digamos agora que precisamos gravar um novo arquivo D, com 800 kB. Este arquivo começará a ser gravado no primeiro espaço disponível, que é a lacuna antes ocupada pelo arquivo A. Como esta lacuna tem apenas 100 kB, apenas os primeiros 100 kB do arquivo D serão gravados na mesma. O restante do arquivo continuará sendo gravado em outras áreas. Portanto 200 kB do arquivo D serão gravados na lacuna antes ocupada por B, os 400 kB seguintes ficarão onde antes estava C, e os 100 kB restantes ficarão em outra área disponível no disco. O arquivo D foi então gravado de forma fragmentada, em 4 áreas diferentes.
Em um primeiro momento, o usuário não precisa se preocupar com este fato. Quando este arquivo é acessado, o sistema operacional fica encarregado de encontrar suas partes e carregar na memória RAM de forma correta. A desvantagem é que o tempo de carga deste arquivo será maior. Os arquivos armazenados de forma contígua, ou seja, em uma única área, são acessados de forma mais rápida. Por isso é altamente recomendável que usemos periodicamente um programa desfragmentador, como o que acompanha o Windows. Esses programas encontram os arquivos fragmentados e os gravam em outros locais de modo que fiquem em áreas contíguas, não fragmentadas. Como resultado, o computador fica mais rápido, já que o seu acesso a disco fica mais eficiente.

FAT32

Você provavelmente já ouviu falar em FAT32. Trata-se de uma forma de organizar os arquivos em um disco rígido. Antes dela era utilizada a FAT16, e a sua principal desvantagem era que não podia operar com discos rígidos com mais de 2 GB. Se um disco rígido tivesse capacidade maior que esta, precisava ser dividido em dois ou mais drives lógicos. Por exemplo, um disco de 6 GB era normalmente dividido em três drives (C, D e E) de 2 GB cada. A FAT32 não possui mais esta limitação, podemos ter discos de capacidades bem mais elevadas, sem a necessidade de dividi-los.

Vírus de computador

Vírus de computador não são organismos vivos, como os que atacam animais e plantas. Tratam-se de programas feitos por programadores de má índole (para não dizer coisa pior), que têm como objetivo principal causar danos aos dados do computador, e como segundo objetivo, propagar-se para outros computadores, tudo isso sem que o usuário perceba. A infecção se dá através de um disquete contaminado, através de sites da Internet com conteúdo pouco recomendável (por exemplo, sites dedicados a dar dicas sobre pirataria), e o modo mais comum, a propagação através de e-mail. Os usuários principiantes deveriam ser avisados que quando recebem um e-mail de remetente desconhecido, contendo um arquivo anexo, este arquivo pode ser um vírus. Alguns usuários desavisados recebem e-mails contendo arquivos anexos com nomes sugestivos, como TIAZINHA.JPG ou FEITICEIRA.JPG, e ao abrirem o arquivo para visualização, estão na verdade ativando o vírus. Algumas precauções básicas podem ser tomadas para não ter o computador contaminado com vírus. Use um bom programa anti-vírus, não abra arquivos anexos de forma indiscriminada, principalmente quando forem de remetente desconhecido, e não navegue por sites de hackers, crackers e piratas de software.

Formatação de discos

Formatar um disco é fazer uma demarcação magnética das trilhas e setores nas quais serão gravados os dados. Disquetes e discos rígidos usam setores de 512 bytes, mas outros tipos de disco podem usar setores de tamanhos diferentes. É o caso dos discos CD-RW, que usam setores de grande tamanho, como 64 kB. Discos rígidos são formatados na fábrica, e o usuário não pode formatá-lo. O único tipo de formatação que o usuário faz em um disco rígido é a chamada formatação lógica. Esta formatação não cria trilhas e setores, apenas apaga os diretórios e a tabela de alocação de arquivos, e faz uma verificação em todos os setores do disco, à procura de erros, sem entretanto fazer a magnetização dos setores. Esta magnetização não é necessária, pois os setores continuam no mesmo lugar. Quando novos dados forem gravados, os setores já existentes estarão disponíveis e serão preenchidos com esses novos dados. Já os disquetes e os discos CD-RW podem ser formatados logicamente ou fisicamente. A formatação física, ou incondicional, cria novamente as trilhas e setores. De um modo geral, não é necessário fazer formatação física diversas vezes, basta uma. Nas vezes seguintes, podemos fazer a formatação lógica e rápida, que apenas apaga o diretório e FAT, e demora apenas alguns segundos.

Cache de disco

Nem toda a memória disponível em um computador é usada para armazenar programas e dados. Uma parte dela é usada para acelerar o desempenho do disco rígido e do drive de CD-ROM. O método usado para melhorar o desempenho é muito simples. Quando dados são lidos do disco rígido, eles não são imediatamente entregues ao programa que os solicitou. Esses dados vão inicialmente para uma área de memória, chamada cache de disco, para depois serem transferidos. Se depois de executar um programa ou acessar um arquivo, o usuário pede novamente a execução do mesmo programa e a leitura dos mesmos dados, existe uma chance de que a cópia desses dados ainda esteja na cache. Sendo assim, não precisa fazer o acesso a disco, pode pegar os dados diretamente na memória, o que é muito mais rápido. Uma outra forma de aceleração da cache é a leitura antecipada. Quando um programa pede a leitura de um pequeno trecho de um arquivo, o sistema operacional lê este trecho, entrega-o ao programa que o solicitou e comanda a leitura dos trechos seguintes. Existe uma grande chance do programa que pediu a leitura de uma área (por exemplo, o início de um arquivo), pedir logo depois a área seguinte do mesmo arquivo (meio e fim). Com a leitura antecipada, o programa receberá mais rapidamente os dados pedidos. É feita a leitura de um grande bloco de dados, e o primeiro deles é entregue ao programa. Quando o programa pedir os dados seguintes, eles já terão sido lidos.
O Windows é suficientemente esperto para, quando tem muita memória livre, usá-la ao máximo como cache de disco, e à medida em que os programas precisam de mais memória, liberar áreas de memória antes usadas como cache para os programas.

Utilitários e aplicativos

Existem vários tipos de programas, e muitos deles podem ser divididos em duas classes: utilitários e aplicativos. Os aplicativos são os programas que dão ao computador alguma utilidade. Editores de texto, editores gráficos, jogos, navegadores, programas de correio eletrônico são alguns exemplos de aplicativos. Já os utilitários são programas que, apesar do seu nome, não têm para o usuário uma utilidade direta, e sim servem para manter o computador funcionando de forma mais segura e eficiente. Programas anti-vírus, programas para formatação de disco, desfragmentadores de disco e programas de backup são alguns exemplos de utilitários. Nenhum usuário de computador vai passar o tempo todo fazendo backup, checando vírus, formatando e desfragmentando discos. Ele fará essas coisas periodicamente, em uma pequena parte do tempo, apenas para manter o computador em ordem.

DirectX

Se você gosta de jogos, não pode passar sem conhecer o DirectX. Trata-se de um conjunto de funções que permitem aos jogos terem acesso direto aos hardware, possibilitando assim que esses jogos operem de forma extremamente rápida. Antes de existir o DirectX, os jogos acessavam o hardware como outro programa qualquer, passando por toda a “burocracia” do sistema operacional. Este método de acesso “burocrático” é adequado para programas que geram poucos movimentos na tela e que recebem dados em baixa velocidade a partir do teclado e mouse. Já os jogos de ação precisam gerar imagens bastante rápidas, gerar sons sincronizados com os movimentos, receber movimentos a partir de joysticks e através de uma rede (muitos jogos permitem múltiplos jogadores, que podem operar em conjunto graças à rede).
A Microsoft desenvolveu então o DirectX, composto de várias partes:
DirectDraw - acesso direto à placa de vídeo para gráficos 2D
Direct3D - acesso direto à memória de vídeo para gráficos 3D
DirectSound - acesso direto à placa de som
DirectPlay - acesso direto a rede
Direct Input - acesso direto a joysticks
Este padrão possibilitou a criação de milhares de jogos para Windows. Antes disso os jogos para Windows eram muito lentos, e as empresas que os criavam eram obrigadas a utilizar o MS-DOS para conseguir mais velocidade. Hoje não são mais lançados jogos para MS-DOS, apenas para Windows, e usando o DirectX. O usuário deve sempre manter no seu computador a versão mais nova do DirectX. Quando instalamos um jogo, normalmente é feita a instalação do DirectX, caso a versão existente no CD do jogo seja mais nova que a instalada no computador. O usuário também pode ir direto ao site da Microsoft, em www.microsoft.com/directx para obter a versão mais nova do DirectX.

Direct3D, Glide e OpenGL

O Direct3D é a parte do DirectX dedicada à geração de imagens tridimensionais. Dizemos que é uma API gráfica 3D (Application Programming Interface). A maioria dos jogos usam a API Direct3D, mas existem outras duas importantes: Glide e OpenGL. O Glide é a API nativa das placas 3D produzidas pela 3DFx, um dos maiores fabricantes de chips gráficos 3D. São as placas conhecidas como Voodoo, bastante comuns no mercado, apesar de caras. Placas Voodoo devem operar preferencialmente com o Glide, mas também podem operar com Direct3D e OpenGL, apesar do Glide oferecer melhores resultados. A maioria dos jogos que opera com Glide, opera também com Direct3D. Os fãs de jogos de corridas normalmente preferem as placas Voodoo, já que a maioria desses jogos, apesar de funcionarem com o Direct3D, são otimizados para o sistema Glide.
A outra API importante é o OpenGL. É usada para a geração de gráficos 3D em programas para uso profissional, como CAD em geral, mas muitos jogos modernos o estão utilizando, devido à melhor qualidade das suas imagens. O OpenGL tem como prioridade a precisão na representação de imagens, e não a velocidade.
Alguns jogos podem operar com OpenGL, mas ficam um pouco lentos. Se a placa de vídeo e o processador forem bastante rápidos, o problema da lentidão é resolvido, e os gráficos são fantásticos. Atualmente a maioria das placas 3D é acompanhada de drivers para Direct3D e OpenGL. As placas Voodoo são compatíveis com Glide, Direct3D e MiniGL, uma porção do OpenGL utilizada em jogos.

0 comentários: sobre Como montar um PC - parte 2: Introdução ao hardware de PCs (continuação)

Postar um comentário para Como montar um PC - parte 2: Introdução ao hardware de PCs (continuação)

Related Posts Plugin for WordPress, Blogger...